The star capture model for fueling quasar accretion disks

Although the powering mechanism for quasars is now widely recognized to be the accretion of matter in a geometrically thin disk, the transport of matter to the inner region of the disk where luminosity is emitted remains an unsolved question. Miralda-Escudé & Kollmeier (2005) proposed a model wh...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the International Astronomical Union Vol. 6; no. S271; pp. 381 - 382
Main Authors Kennedy, Gareth F., Miralda-Escudé, Jordi, Kollmeier, Juna A.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although the powering mechanism for quasars is now widely recognized to be the accretion of matter in a geometrically thin disk, the transport of matter to the inner region of the disk where luminosity is emitted remains an unsolved question. Miralda-Escudé & Kollmeier (2005) proposed a model whereby quasars are fuelled when stars are captured by the accretion disk as they plunge through the gas. Such plunging stars can then be destroyed and deliver their mass to the accretion disk. Here we present the first detailed calculations for the capture of stars originating far from the accretion disk near the zone of influence of the central black hole. In particular we examine the effect of adding a perturbing mass to a fixed stellar cusp potential on bringing stars into the accretion disk where they can be captured. The work presented here will be discussed in detail in an upcoming publication Kennedy et al. (2010).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1743-9213
1743-9221
DOI:10.1017/S1743921311017893