Inhibition of the Splicing of Glucose-6-phosphate Dehydrogenase Precursor mRNA by Polyunsaturated Fatty Acids

Polyunsaturated fatty acids inhibit the expression of hepatic glucose-6-phosphate dehydrogenase (G6PD) by changes in the amount of G6PD pre-mRNA in the nucleus in the absence of changes in the transcription rate of the gene. We have compared the nuclear accumulation of partially and fully spliced mR...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 277; no. 34; pp. 31270 - 31278
Main Authors Tao, Huimin, Szeszel-Fedorowicz, Wioletta, Amir-Ahmady, Batoul, Gibson, Matthew A, Stabile, Laura P, Salati, Lisa M
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 23.08.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polyunsaturated fatty acids inhibit the expression of hepatic glucose-6-phosphate dehydrogenase (G6PD) by changes in the amount of G6PD pre-mRNA in the nucleus in the absence of changes in the transcription rate of the gene. We have compared the nuclear accumulation of partially and fully spliced mRNA for G6PD in the livers of mice fed diets high versus low in polyunsaturated fat. Consumption of a diet high in polyunsaturated fat decreased the accumulation of partially spliced forms of the G6PD pre-mRNA. Examining the fate of multiple introns within the G6PD primary transcript indicated that in mice fed a high fat diet, G6PD pre-mRNA containing intron 11 accumulated within the nucleus, whereas G6PD mature mRNA abundance was inhibited 50% or more within the same livers. Transient transfection of RNA reporters into primary hepatocyte cultures was used to localize the cis-acting RNA element involved in this regulated splicing. Reporter RNA produced from constructs containing exon 12 were decreased in amount by arachidonic acid. The extent of this decrease paralleled that seen in the expression of the endogenous G6PD mRNA. The presence of both exon 12 and a neighboring intron within the G6PD reporter RNA was essential for regulation by polyunsaturated fatty acid. Inhibition was not dependent on the presence of the G6PD polyadenylation signal and the 3′-untranslated region, but substitution with the SV40 poly(A) signal attenuated the inhibition by arachidonic acid. Thus, exon 12 contains a putative splicing regulatory element involved in the inhibition of G6PD expression by polyunsaturated fat.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M203196200