Optimal Base Wavelet Selection for ECG Noise Reduction Using a Comprehensive Entropy Criterion
The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multip...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 17; no. 9; pp. 6093 - 6109 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1099-4300 1099-4300 |
DOI | 10.3390/e17096093 |
Cover
Abstract | The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach (α = 0.05 , two-sided t- test). |
---|---|
AbstractList | The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach (α = 0.05 , two-sided t- test). The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach (α = 0.05 , two-sided t- test). The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach ( alpha = 0.05 , two-sided t- test). |
Author | He, Hong Tan, Yonghong Wang, Yuexia |
Author_xml | – sequence: 1 givenname: Hong surname: He fullname: He, Hong – sequence: 2 givenname: Yonghong surname: Tan fullname: Tan, Yonghong – sequence: 3 givenname: Yuexia surname: Wang fullname: Wang, Yuexia |
BookMark | eNplkU1vFDEMhiNUJNrCgX8QiQsclsaTTD6OMNqWShWVgIobUXbilKxmJ0OSrdR_T8oCQuViW_bjV3rtE3I0pxkJeQnsLeeGnSEoZiQz_Ak5BmbMSnDGjv6pn5GTUraMdbwDeUy-XS817txE37uC9Ku7wwkr_dziWGOaaUiZrocL-jHFNv-Efn_o35Q431JHh7RbMn7HucQ7pOu55rTc0yHHirlxz8nT4KaCL37nU3Jzvv4yfFhdXV9cDu-uViM3UFd8o73HEAIolODVhkuldB_A9ULCpudKGYlCgRSOQ4d69KPSWqjeB9Ca8VNyedD1yW3tkpulfG-Ti_ZXI-Vb63KN44Q2hM50PRNag2tqwWi36TxogYwJz1TTen3QWnL6scdS7S6WEafJzZj2xYJSjPdcGtnQV4_QbdrnuTltVAeGgej7Rp0dqDGnUjIGO8bqHs5Ys4uTBWYffmf__q5tvHm08cfS_-xP2uaYYA |
CitedBy_id | crossref_primary_10_1016_j_measurement_2022_112163 crossref_primary_10_3389_fams_2021_785803 crossref_primary_10_1080_00423114_2022_2039724 crossref_primary_10_1515_sagmb_2018_0045 crossref_primary_10_3390_s17112448 crossref_primary_10_1080_2374068X_2022_2109258 crossref_primary_10_1109_TIM_2022_3193169 crossref_primary_10_3390_s21051851 crossref_primary_10_3390_math12111718 crossref_primary_10_3390_app12136470 crossref_primary_10_1007_s40032_019_00519_9 crossref_primary_10_1109_TII_2020_2966223 crossref_primary_10_1016_j_asoc_2017_02_001 crossref_primary_10_1016_j_chemolab_2016_11_012 crossref_primary_10_1109_ACCESS_2022_3177735 crossref_primary_10_1016_j_enbuild_2023_113797 crossref_primary_10_5121_ijma_2022_14501 crossref_primary_10_3390_app122312011 crossref_primary_10_3390_electronics14030612 crossref_primary_10_1016_j_jag_2017_02_005 crossref_primary_10_1088_1402_4896_acbdd2 crossref_primary_10_1016_j_engappai_2018_01_004 crossref_primary_10_1109_TII_2024_3431018 crossref_primary_10_15446_dyna_v84n203_63745 crossref_primary_10_3390_e25030419 crossref_primary_10_1002_stc_2762 crossref_primary_10_23939_acps2019_02_084 crossref_primary_10_3390_app14093921 crossref_primary_10_1007_s11018_022_02007_6 crossref_primary_10_1109_JSEN_2020_3034742 crossref_primary_10_1016_j_artmed_2021_102117 crossref_primary_10_1002_cta_3032 |
Cites_doi | 10.1007/s11235-010-9286-2 10.1109/51.932724 10.1007/978-0-85729-868-3 10.1093/biomet/81.3.425 10.1016/j.compeleceng.2012.11.006 10.1007/978-1-4419-7970-4 10.1109/MSPCT.2011.6150473 10.1016/j.jelectrocard.2010.07.007 10.1166/jmihi.2015.1369 10.1109/ICIAS.2007.4658464 10.1088/0967-3334/26/5/R01 10.1155/2013/763903 10.1111/1467-9469.00202 10.1016/j.recesp.2012.11.007 10.1109/18.382009 10.1016/j.dsp.2005.12.003 10.1161/01.CIR.101.23.e215 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2015 |
Copyright_xml | – notice: Copyright MDPI AG 2015 |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/e17096093 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
EndPage | 6109 |
ExternalDocumentID | oai_doaj_org_article_ff292504881a4a3f98ab2d184e004d07 3835310271 10_3390_e17096093 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IPNFZ J9A KQ8 L6V M7S MODMG M~E OK1 OVT PHGZM PHGZT PIMPY PROAC PTHSS RIG RNS TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c391t-3b8ddefff17e61d7b367785f1a5461b537796e47164a312e8cdc788475df18803 |
IEDL.DBID | 8FG |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:25:07 EDT 2025 Fri Sep 05 04:44:03 EDT 2025 Fri Jul 25 12:00:58 EDT 2025 Tue Jul 01 04:31:40 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-3b8ddefff17e61d7b367785f1a5461b537796e47164a312e8cdc788475df18803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1721901455?pq-origsite=%requestingapplication% |
PQID | 1721901455 |
PQPubID | 2032401 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ff292504881a4a3f98ab2d184e004d07 proquest_miscellaneous_1770353696 proquest_journals_1721901455 crossref_citationtrail_10_3390_e17096093 crossref_primary_10_3390_e17096093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationYear | 2015 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bruce (ref_23) 1997; 7 Donoho (ref_16) 1994; 81 Amit (ref_8) 2015; 5 Mateo (ref_15) 2013; 39 ref_14 Moody (ref_20) 2001; 20 ref_11 MacGibbon (ref_18) 2000; 27 Singh (ref_6) 2006; 16 Ata (ref_22) 2012; 1 Goldberger (ref_21) 2000; 101 ref_3 Addison (ref_13) 2005; 26 Donoho (ref_17) 1995; 41 ref_19 Dahshan (ref_12) 2011; 46 Clemmensen (ref_1) 2013; 66 Luo (ref_2) 2010; 43 Stantic (ref_10) 2014; 7 ref_9 ref_5 ref_4 ref_7 |
References_xml | – ident: ref_7 – volume: 46 start-page: 209 year: 2011 ident: ref_12 article-title: Genetic Algorithm and Wavelet Hybrid Scheme for ECG Signal Denoising publication-title: Telecommun. Syst. doi: 10.1007/s11235-010-9286-2 – volume: 20 start-page: 45 year: 2001 ident: ref_20 article-title: The Impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng. Med. Biol. doi: 10.1109/51.932724 – ident: ref_3 doi: 10.1007/978-0-85729-868-3 – volume: 1 start-page: 1 year: 2012 ident: ref_22 article-title: Denoising of Weak ECG Signals by Using Wavelet Analysis and Fuzzy Thresholding publication-title: Netw. Model. Anal. Health Inform. Bioinfor. – volume: 7 start-page: 99 year: 2014 ident: ref_10 article-title: Selection of Optimal Parameters for ECG Signal Smoothing and Baseline Drift Removal publication-title: Comput. Inf. Sci. – ident: ref_4 – volume: 81 start-page: 425 year: 1994 ident: ref_16 article-title: Ideal Spatial Adaptation via Wavelet Shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 39 start-page: 1561 year: 2013 ident: ref_15 article-title: A Method for Removing Noise from Continuous Brain Signal Recordings publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2012.11.006 – ident: ref_19 doi: 10.1007/978-1-4419-7970-4 – ident: ref_11 doi: 10.1109/MSPCT.2011.6150473 – volume: 43 start-page: 486 year: 2010 ident: ref_2 article-title: A Review of Electrocardiogram Filtering publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2010.07.007 – volume: 5 start-page: 138 year: 2015 ident: ref_8 article-title: Optimal Selection of Wavelet Function and Decomposition Level for Removal of ECG Signal Artifacts publication-title: J. Med. Imaging Health Inf. doi: 10.1166/jmihi.2015.1369 – ident: ref_9 doi: 10.1109/ICIAS.2007.4658464 – volume: 26 start-page: 155 year: 2005 ident: ref_13 article-title: Wavelet Transforms and the ECG: A Review publication-title: Physiol. Meas. doi: 10.1088/0967-3334/26/5/R01 – ident: ref_14 – volume: 7 start-page: 855 year: 1997 ident: ref_23 article-title: WaveShrink with Firm Shrinkage publication-title: Stat. Sin. – ident: ref_5 doi: 10.1155/2013/763903 – volume: 27 start-page: 475 year: 2000 ident: ref_18 article-title: Nonparametric Curve Estimation by Wavelet Thresholding with Locally Stationary Errors publication-title: Scand. J. Stat. doi: 10.1111/1467-9469.00202 – volume: 66 start-page: 212 year: 2013 ident: ref_1 article-title: Telecardiology: Past, Present and Future publication-title: Rev. Esp. Cardiol. doi: 10.1016/j.recesp.2012.11.007 – volume: 41 start-page: 613 year: 1995 ident: ref_17 article-title: Denoising by Soft-thresholding publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.382009 – volume: 16 start-page: 275 year: 2006 ident: ref_6 article-title: Optimal Selection of Wavelet Basis Function Applied to ECG Signal Denoising publication-title: Digit. Signal. Process. doi: 10.1016/j.dsp.2005.12.003 – volume: 101 start-page: e215 year: 2000 ident: ref_21 article-title: Physiobank, Physiotoolkit, and Physionet: Components of a New Research publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 |
SSID | ssj0023216 |
Score | 2.2170527 |
Snippet | The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 6093 |
SubjectTerms | base wavelet Criteria Entropy Entropy (Information) Filtering Filtration optimal selection Optimization Roots thresholding filtering Wavelet |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BSgMxEA3SkxdRVKxWieLBy9Jms9lNjra0FsEKarEnlySboKDbUtuDf-9MdlsUBS9ek2EJM5lkHpl9j5DzwnqudKIj1A4BgKJYpKVXkfVeZMqlVgQS15tROhwn1xMx-SL1hT1hFT1w5bi297FCmi0pGXySeyW1iQvAJQ7CW1T_kXdUZwWmaqjFY5ZWPEIcQH3bsSxQq_Fvt08g6f9xBoeLZbBNtuqKkF5WK9khG67cJU-3kMpvMNyFW4Y-apSHWND7IFoDnqRQatJ-74qOpi8wf4f8q2E8dABQTTHN5-656k6nfWxHn31Q1DWAHTct98h40H_oDaNaCiGyXLFFxI2Ec8h7zzKXsiIzHInfhGdaJCkzAmkDU5cg-NGcxU7awgK4TTJReGRc4_ukUU5Ld0Ao51xzKAtM4lSipTQF60gljbGxV4nVTXKxclFua55wlKt4zQEvoDfztTeb5GxtOqvIMX4z6qKf1wbIZx0GIMp5HeX8ryg3SWsVpbxOsvcc0Su-AgvRJKfraUgPfPPQpZsu0QaONIGihYf_sY4jsgkVk6iazFqksZgv3TFUJQtzEjbgJxN_3fs priority: 102 providerName: Directory of Open Access Journals |
Title | Optimal Base Wavelet Selection for ECG Noise Reduction Using a Comprehensive Entropy Criterion |
URI | https://www.proquest.com/docview/1721901455 https://www.proquest.com/docview/1770353696 https://doaj.org/article/ff292504881a4a3f98ab2d184e004d07 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwELVYuOwFgWC15aMyiAOXCBzHiX1CFLVFSBQEi-iJyHZsQIKklHLg3zPjpEEItJccbCuH8cx4nj16j5C9wnqudKIj1A4BgKJYpKVXkfVeZMqlVgQS1_NRenqTnI3FuLlwe23aKuc5MSTqorJ4R36AUAWf_IQ4mrxEqBqFr6uNhMYvssTgpEE_l4NhC7h4zNKaTYgDtD9wLAsEa_zLGRSo-r9l4nC8DFbIclMX0uN6I1fJgivXyN0FBPQzDPfgrKG3GkUiZvQ6SNeAPSkUnLR_MqSj6hHmr5CFNYyHPgCqKQb71D3UPeq0j03pk3eK6gbgd1W5Tm4G_X8np1EjiBBZrtgs4kZCNvLes8ylrMgMR_o34ZkWScqMQPLA1CUIgTRnsZO2sABxk0wUHnnX-B-yWFal-0so51xzKA5M4lSipTQFO5RKGmNjrxKrO2R_bqLcNmzhKFrxlANqQGvmrTU7ZLddOqkpMn5a1EM7twuQ1ToMVNP7vAmS3PtYIaWalAzch3sltYkLwKAOQrk4zDpka75LeRNqr_mnY3TITjsNQYIvH7p01RuugcQmULpw4_-_2CS_oSISdRPZFlmcTd_cNlQdM9MNrtUlS73-6PKqG7A7fIdj9gG71tmb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEuCASIbQsYBBKXqOvYTuxDhdiyZUvbBZVW9ERwHJtWgmS73Qr1T_EbmckXQiBuvTqWD-OZ8bx4_B7A88IFYay0EWmHIEAxPLI6mMiFoFLjE6dqEteDWTI9lu9O1MkK_OzewlBbZZcT60RdVI7-kW8SVKErP6Vezc8jUo2i29VOQqNxiz1_9QMh28XW7hvc3xdxvDM52p5GrapA5IThy0jkGkM6hMBTn_AizQVxqKnArZIJzxUx8CVeEo6wgsdeu8IhTpSpKgKRlwlc9wasSnrROoDV8WT24bCHeCLmScNfJIQZbXqe1pRu4o9TrxYH-Cv31wfazh243Vai7HXjOndhxZf34PN7TCHfcXiMpxv7ZEmWYsk-1mI5uIMMS1w22X7LZtUZfj8k3td6vO48YJZReln406Yrnk2oDX5-xUhPAT29Ku_D8bUY6wEMyqr0D4EJIazAciSX3kirdV7wkTY6z10cjHR2CC87E2Wu5ScnmYxvGeIUsmbWW3MIz_qp84aU41-TxmTnfgLxaNcD1eJr1oZlFkJsiMRNa44OK4LRNo8LRL0ek0cxSoew0e1S1gb3RfbbFYfwtP-MYUl3Lbb01SXNwVSqSCxx7f9LPIGb06OD_Wx_d7a3DrewHlNNC9sGDJaLS_8Ia55l_rh1NAZfrtu3fwFcSRNx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiEuCASIhQIGgcQl2nUcJ_YBIdrutqWwIKCipwbbsVskSJbtVqh_jV_HjPOBEIhbr7blw3hmPC-evAfwpHJBaJOZhLRDEKBonhgVdOJCkIX2uZORxPXNPN89yF4dysM1-Nn_C0NtlX1OjIm6ahx9Ix8TVKEnPynHoWuLeLc9e7H4npCCFL209nIarYvs-_MfCN9On-9t41k_TdPZ9OPWbtIpDCROaL5KhFUY3iEEXvicV4UVxKcmAzcyy7mVxMaX-4wwhRE89cpVDjFjVsgqEJGZwH0vweVCFJqAn5rtDGBPpDxvmYyE0JOx50UkdxN_3H9RJuCvWyBebbPrcK2rSdnL1oluwJqvb8LRW0wm33B4E-859smQQMWKfYiyOXiWDItdNt3aYfPmC86_JwbYOB57EJhhlGiW_qTtj2dTaohfnDNSVkCfb-pbcHAhproN63VT-zvAhBBGYGFiM68zo5St-ERpZa1Lg86cGcGz3kSl65jKSTDja4mIhaxZDtYcweNh6aKl5_jXok2y87CAGLXjQLM8LrsALUNINdG5KcXRdUXQyti0QvzrMY1Uk2IEG_0plV2Yn5a_nXIEj4ZpDFB6dTG1b85oDSZVSbKJd_-_xUO4gh5dvt6b79-Dq1iYybaXbQPWV8szfx-Ln5V9EL2MweeLdutfRIAWQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Base+Wavelet+Selection+for+ECG+Noise+Reduction+Using+a+Comprehensive+Entropy+Criterion&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=He%2C+Hong&rft.au=Tan%2C+Yonghong&rft.au=Wang%2C+Yuexia&rft.date=2015-09-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=17&rft.issue=9&rft.spage=6093&rft.epage=6109&rft_id=info:doi/10.3390%2Fe17096093&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e17096093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |