Optimal Base Wavelet Selection for ECG Noise Reduction Using a Comprehensive Entropy Criterion

The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multip...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 17; no. 9; pp. 6093 - 6109
Main Authors He, Hong, Tan, Yonghong, Wang, Yuexia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2015
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e17096093

Cover

Abstract The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach (α = 0.05 , two-sided t- test).
AbstractList The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach (α = 0.05 , two-sided t- test).
The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach (α = 0.05 , two-sided t- test).
The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach ( alpha = 0.05 , two-sided t- test).
Author He, Hong
Tan, Yonghong
Wang, Yuexia
Author_xml – sequence: 1
  givenname: Hong
  surname: He
  fullname: He, Hong
– sequence: 2
  givenname: Yonghong
  surname: Tan
  fullname: Tan, Yonghong
– sequence: 3
  givenname: Yuexia
  surname: Wang
  fullname: Wang, Yuexia
BookMark eNplkU1vFDEMhiNUJNrCgX8QiQsclsaTTD6OMNqWShWVgIobUXbilKxmJ0OSrdR_T8oCQuViW_bjV3rtE3I0pxkJeQnsLeeGnSEoZiQz_Ak5BmbMSnDGjv6pn5GTUraMdbwDeUy-XS817txE37uC9Ku7wwkr_dziWGOaaUiZrocL-jHFNv-Efn_o35Q431JHh7RbMn7HucQ7pOu55rTc0yHHirlxz8nT4KaCL37nU3Jzvv4yfFhdXV9cDu-uViM3UFd8o73HEAIolODVhkuldB_A9ULCpudKGYlCgRSOQ4d69KPSWqjeB9Ca8VNyedD1yW3tkpulfG-Ti_ZXI-Vb63KN44Q2hM50PRNag2tqwWi36TxogYwJz1TTen3QWnL6scdS7S6WEafJzZj2xYJSjPdcGtnQV4_QbdrnuTltVAeGgej7Rp0dqDGnUjIGO8bqHs5Ys4uTBWYffmf__q5tvHm08cfS_-xP2uaYYA
CitedBy_id crossref_primary_10_1016_j_measurement_2022_112163
crossref_primary_10_3389_fams_2021_785803
crossref_primary_10_1080_00423114_2022_2039724
crossref_primary_10_1515_sagmb_2018_0045
crossref_primary_10_3390_s17112448
crossref_primary_10_1080_2374068X_2022_2109258
crossref_primary_10_1109_TIM_2022_3193169
crossref_primary_10_3390_s21051851
crossref_primary_10_3390_math12111718
crossref_primary_10_3390_app12136470
crossref_primary_10_1007_s40032_019_00519_9
crossref_primary_10_1109_TII_2020_2966223
crossref_primary_10_1016_j_asoc_2017_02_001
crossref_primary_10_1016_j_chemolab_2016_11_012
crossref_primary_10_1109_ACCESS_2022_3177735
crossref_primary_10_1016_j_enbuild_2023_113797
crossref_primary_10_5121_ijma_2022_14501
crossref_primary_10_3390_app122312011
crossref_primary_10_3390_electronics14030612
crossref_primary_10_1016_j_jag_2017_02_005
crossref_primary_10_1088_1402_4896_acbdd2
crossref_primary_10_1016_j_engappai_2018_01_004
crossref_primary_10_1109_TII_2024_3431018
crossref_primary_10_15446_dyna_v84n203_63745
crossref_primary_10_3390_e25030419
crossref_primary_10_1002_stc_2762
crossref_primary_10_23939_acps2019_02_084
crossref_primary_10_3390_app14093921
crossref_primary_10_1007_s11018_022_02007_6
crossref_primary_10_1109_JSEN_2020_3034742
crossref_primary_10_1016_j_artmed_2021_102117
crossref_primary_10_1002_cta_3032
Cites_doi 10.1007/s11235-010-9286-2
10.1109/51.932724
10.1007/978-0-85729-868-3
10.1093/biomet/81.3.425
10.1016/j.compeleceng.2012.11.006
10.1007/978-1-4419-7970-4
10.1109/MSPCT.2011.6150473
10.1016/j.jelectrocard.2010.07.007
10.1166/jmihi.2015.1369
10.1109/ICIAS.2007.4658464
10.1088/0967-3334/26/5/R01
10.1155/2013/763903
10.1111/1467-9469.00202
10.1016/j.recesp.2012.11.007
10.1109/18.382009
10.1016/j.dsp.2005.12.003
10.1161/01.CIR.101.23.e215
ContentType Journal Article
Copyright Copyright MDPI AG 2015
Copyright_xml – notice: Copyright MDPI AG 2015
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/e17096093
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
EndPage 6109
ExternalDocumentID oai_doaj_org_article_ff292504881a4a3f98ab2d184e004d07
3835310271
10_3390_e17096093
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IPNFZ
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
RNS
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c391t-3b8ddefff17e61d7b367785f1a5461b537796e47164a312e8cdc788475df18803
IEDL.DBID 8FG
ISSN 1099-4300
IngestDate Wed Aug 27 01:25:07 EDT 2025
Fri Sep 05 04:44:03 EDT 2025
Fri Jul 25 12:00:58 EDT 2025
Tue Jul 01 04:31:40 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-3b8ddefff17e61d7b367785f1a5461b537796e47164a312e8cdc788475df18803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1721901455?pq-origsite=%requestingapplication%
PQID 1721901455
PQPubID 2032401
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_ff292504881a4a3f98ab2d184e004d07
proquest_miscellaneous_1770353696
proquest_journals_1721901455
crossref_citationtrail_10_3390_e17096093
crossref_primary_10_3390_e17096093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2015
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bruce (ref_23) 1997; 7
Donoho (ref_16) 1994; 81
Amit (ref_8) 2015; 5
Mateo (ref_15) 2013; 39
ref_14
Moody (ref_20) 2001; 20
ref_11
MacGibbon (ref_18) 2000; 27
Singh (ref_6) 2006; 16
Ata (ref_22) 2012; 1
Goldberger (ref_21) 2000; 101
ref_3
Addison (ref_13) 2005; 26
Donoho (ref_17) 1995; 41
ref_19
Dahshan (ref_12) 2011; 46
Clemmensen (ref_1) 2013; 66
Luo (ref_2) 2010; 43
Stantic (ref_10) 2014; 7
ref_9
ref_5
ref_4
ref_7
References_xml – ident: ref_7
– volume: 46
  start-page: 209
  year: 2011
  ident: ref_12
  article-title: Genetic Algorithm and Wavelet Hybrid Scheme for ECG Signal Denoising
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-010-9286-2
– volume: 20
  start-page: 45
  year: 2001
  ident: ref_20
  article-title: The Impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Eng. Med. Biol.
  doi: 10.1109/51.932724
– ident: ref_3
  doi: 10.1007/978-0-85729-868-3
– volume: 1
  start-page: 1
  year: 2012
  ident: ref_22
  article-title: Denoising of Weak ECG Signals by Using Wavelet Analysis and Fuzzy Thresholding
  publication-title: Netw. Model. Anal. Health Inform. Bioinfor.
– volume: 7
  start-page: 99
  year: 2014
  ident: ref_10
  article-title: Selection of Optimal Parameters for ECG Signal Smoothing and Baseline Drift Removal
  publication-title: Comput. Inf. Sci.
– ident: ref_4
– volume: 81
  start-page: 425
  year: 1994
  ident: ref_16
  article-title: Ideal Spatial Adaptation via Wavelet Shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 39
  start-page: 1561
  year: 2013
  ident: ref_15
  article-title: A Method for Removing Noise from Continuous Brain Signal Recordings
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2012.11.006
– ident: ref_19
  doi: 10.1007/978-1-4419-7970-4
– ident: ref_11
  doi: 10.1109/MSPCT.2011.6150473
– volume: 43
  start-page: 486
  year: 2010
  ident: ref_2
  article-title: A Review of Electrocardiogram Filtering
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2010.07.007
– volume: 5
  start-page: 138
  year: 2015
  ident: ref_8
  article-title: Optimal Selection of Wavelet Function and Decomposition Level for Removal of ECG Signal Artifacts
  publication-title: J. Med. Imaging Health Inf.
  doi: 10.1166/jmihi.2015.1369
– ident: ref_9
  doi: 10.1109/ICIAS.2007.4658464
– volume: 26
  start-page: 155
  year: 2005
  ident: ref_13
  article-title: Wavelet Transforms and the ECG: A Review
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/26/5/R01
– ident: ref_14
– volume: 7
  start-page: 855
  year: 1997
  ident: ref_23
  article-title: WaveShrink with Firm Shrinkage
  publication-title: Stat. Sin.
– ident: ref_5
  doi: 10.1155/2013/763903
– volume: 27
  start-page: 475
  year: 2000
  ident: ref_18
  article-title: Nonparametric Curve Estimation by Wavelet Thresholding with Locally Stationary Errors
  publication-title: Scand. J. Stat.
  doi: 10.1111/1467-9469.00202
– volume: 66
  start-page: 212
  year: 2013
  ident: ref_1
  article-title: Telecardiology: Past, Present and Future
  publication-title: Rev. Esp. Cardiol.
  doi: 10.1016/j.recesp.2012.11.007
– volume: 41
  start-page: 613
  year: 1995
  ident: ref_17
  article-title: Denoising by Soft-thresholding
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.382009
– volume: 16
  start-page: 275
  year: 2006
  ident: ref_6
  article-title: Optimal Selection of Wavelet Basis Function Applied to ECG Signal Denoising
  publication-title: Digit. Signal. Process.
  doi: 10.1016/j.dsp.2005.12.003
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_21
  article-title: Physiobank, Physiotoolkit, and Physionet: Components of a New Research
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
SSID ssj0023216
Score 2.2170527
Snippet The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6093
SubjectTerms base wavelet
Criteria
Entropy
Entropy (Information)
Filtering
Filtration
optimal selection
Optimization
Roots
thresholding filtering
Wavelet
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BSgMxEA3SkxdRVKxWieLBy9Jms9lNjra0FsEKarEnlySboKDbUtuDf-9MdlsUBS9ek2EJM5lkHpl9j5DzwnqudKIj1A4BgKJYpKVXkfVeZMqlVgQS15tROhwn1xMx-SL1hT1hFT1w5bi297FCmi0pGXySeyW1iQvAJQ7CW1T_kXdUZwWmaqjFY5ZWPEIcQH3bsSxQq_Fvt08g6f9xBoeLZbBNtuqKkF5WK9khG67cJU-3kMpvMNyFW4Y-apSHWND7IFoDnqRQatJ-74qOpi8wf4f8q2E8dABQTTHN5-656k6nfWxHn31Q1DWAHTct98h40H_oDaNaCiGyXLFFxI2Ec8h7zzKXsiIzHInfhGdaJCkzAmkDU5cg-NGcxU7awgK4TTJReGRc4_ukUU5Ld0Ao51xzKAtM4lSipTQF60gljbGxV4nVTXKxclFua55wlKt4zQEvoDfztTeb5GxtOqvIMX4z6qKf1wbIZx0GIMp5HeX8ryg3SWsVpbxOsvcc0Su-AgvRJKfraUgPfPPQpZsu0QaONIGihYf_sY4jsgkVk6iazFqksZgv3TFUJQtzEjbgJxN_3fs
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimal Base Wavelet Selection for ECG Noise Reduction Using a Comprehensive Entropy Criterion
URI https://www.proquest.com/docview/1721901455
https://www.proquest.com/docview/1770353696
https://doaj.org/article/ff292504881a4a3f98ab2d184e004d07
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwELVYuOwFgWC15aMyiAOXCBzHiX1CFLVFSBQEi-iJyHZsQIKklHLg3zPjpEEItJccbCuH8cx4nj16j5C9wnqudKIj1A4BgKJYpKVXkfVeZMqlVgQS1_NRenqTnI3FuLlwe23aKuc5MSTqorJ4R36AUAWf_IQ4mrxEqBqFr6uNhMYvssTgpEE_l4NhC7h4zNKaTYgDtD9wLAsEa_zLGRSo-r9l4nC8DFbIclMX0uN6I1fJgivXyN0FBPQzDPfgrKG3GkUiZvQ6SNeAPSkUnLR_MqSj6hHmr5CFNYyHPgCqKQb71D3UPeq0j03pk3eK6gbgd1W5Tm4G_X8np1EjiBBZrtgs4kZCNvLes8ylrMgMR_o34ZkWScqMQPLA1CUIgTRnsZO2sABxk0wUHnnX-B-yWFal-0so51xzKA5M4lSipTQFO5RKGmNjrxKrO2R_bqLcNmzhKFrxlANqQGvmrTU7ZLddOqkpMn5a1EM7twuQ1ToMVNP7vAmS3PtYIaWalAzch3sltYkLwKAOQrk4zDpka75LeRNqr_mnY3TITjsNQYIvH7p01RuugcQmULpw4_-_2CS_oSISdRPZFlmcTd_cNlQdM9MNrtUlS73-6PKqG7A7fIdj9gG71tmb
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V7QEuCASIbQsYBBKXqOvYTuxDhdiyZUvbBZVW9ERwHJtWgmS73Qr1T_EbmckXQiBuvTqWD-OZ8bx4_B7A88IFYay0EWmHIEAxPLI6mMiFoFLjE6dqEteDWTI9lu9O1MkK_OzewlBbZZcT60RdVI7-kW8SVKErP6Vezc8jUo2i29VOQqNxiz1_9QMh28XW7hvc3xdxvDM52p5GrapA5IThy0jkGkM6hMBTn_AizQVxqKnArZIJzxUx8CVeEo6wgsdeu8IhTpSpKgKRlwlc9wasSnrROoDV8WT24bCHeCLmScNfJIQZbXqe1pRu4o9TrxYH-Cv31wfazh243Vai7HXjOndhxZf34PN7TCHfcXiMpxv7ZEmWYsk-1mI5uIMMS1w22X7LZtUZfj8k3td6vO48YJZReln406Yrnk2oDX5-xUhPAT29Ku_D8bUY6wEMyqr0D4EJIazAciSX3kirdV7wkTY6z10cjHR2CC87E2Wu5ScnmYxvGeIUsmbWW3MIz_qp84aU41-TxmTnfgLxaNcD1eJr1oZlFkJsiMRNa44OK4LRNo8LRL0ek0cxSoew0e1S1gb3RfbbFYfwtP-MYUl3Lbb01SXNwVSqSCxx7f9LPIGb06OD_Wx_d7a3DrewHlNNC9sGDJaLS_8Ia55l_rh1NAZfrtu3fwFcSRNx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiEuCASIhQIGgcQl2nUcJ_YBIdrutqWwIKCipwbbsVskSJbtVqh_jV_HjPOBEIhbr7blw3hmPC-evAfwpHJBaJOZhLRDEKBonhgVdOJCkIX2uZORxPXNPN89yF4dysM1-Nn_C0NtlX1OjIm6ahx9Ix8TVKEnPynHoWuLeLc9e7H4npCCFL209nIarYvs-_MfCN9On-9t41k_TdPZ9OPWbtIpDCROaL5KhFUY3iEEXvicV4UVxKcmAzcyy7mVxMaX-4wwhRE89cpVDjFjVsgqEJGZwH0vweVCFJqAn5rtDGBPpDxvmYyE0JOx50UkdxN_3H9RJuCvWyBebbPrcK2rSdnL1oluwJqvb8LRW0wm33B4E-859smQQMWKfYiyOXiWDItdNt3aYfPmC86_JwbYOB57EJhhlGiW_qTtj2dTaohfnDNSVkCfb-pbcHAhproN63VT-zvAhBBGYGFiM68zo5St-ERpZa1Lg86cGcGz3kSl65jKSTDja4mIhaxZDtYcweNh6aKl5_jXok2y87CAGLXjQLM8LrsALUNINdG5KcXRdUXQyti0QvzrMY1Uk2IEG_0plV2Yn5a_nXIEj4ZpDFB6dTG1b85oDSZVSbKJd_-_xUO4gh5dvt6b79-Dq1iYybaXbQPWV8szfx-Ln5V9EL2MweeLdutfRIAWQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Base+Wavelet+Selection+for+ECG+Noise+Reduction+Using+a+Comprehensive+Entropy+Criterion&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=He%2C+Hong&rft.au=Tan%2C+Yonghong&rft.au=Wang%2C+Yuexia&rft.date=2015-09-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=17&rft.issue=9&rft.spage=6093&rft.epage=6109&rft_id=info:doi/10.3390%2Fe17096093&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e17096093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon