Full-Diversity Approximated Lattice Reduction Algorithm for Low-Complexity MIMO Detection
In this letter, we propose a new approximated basis vector reordering (ABVR) criterion for low-complexity lattice reduction aided (LRA) multiple-input multiple-output (MIMO) detection. Despite the approximation, the ABVR criterion is proved to collect the full receiving diversity for LRA linear dete...
Saved in:
Published in | IEEE communications letters Vol. 18; no. 6; pp. 1079 - 1082 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this letter, we propose a new approximated basis vector reordering (ABVR) criterion for low-complexity lattice reduction aided (LRA) multiple-input multiple-output (MIMO) detection. Despite the approximation, the ABVR criterion is proved to collect the full receiving diversity for LRA linear detection. A variant of the well-known complex Lenstra Lenstra Lovász (CLLL) algorithm, i.e., LLL with deep insertion (DLLL), is employed to accommodate the ABVR criterion (DLLL-ABVR). Compared with the original CLLL and other approximated algorithms, the proposed DLLL-ABVR algorithm largely reduces the number of basis vector reordering (BVR) operations. Simulation results show that, on a practical MIMO scale, the proposed lattice reduction algorithm provides similar detection performance, especially for successive interference cancelation (SIC) detectors, while requiring significantly lower computational complexity. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2014.2323235 |