Fracture investigation at V-notch tip using coherent gradient sensing (CGS)

Local deformation field and fracture characterization of mode I V-notch tip are studied using coherent gradient sensing (CGS). First, the governing equations that relate to the CGS measurements and the elastic solution at mode I V-notch tip are derived in terms of the stress intensity factor, materi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 43; no. 5; pp. 1189 - 1200
Main Authors Yao, X.F., Yeh, H.Y., Xu, W.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Local deformation field and fracture characterization of mode I V-notch tip are studied using coherent gradient sensing (CGS). First, the governing equations that relate to the CGS measurements and the elastic solution at mode I V-notch tip are derived in terms of the stress intensity factor, material constant, notch angle and fringe order. Then, a series of CGS fringe patterns of mode I V-notch are simulated, and the effects of the notch angle on the shape and size of CGS fringe pattern are analyzed. Finally, the local deformation field and fracture characterization of mode I V-notch tip with different V-notch angles are experimentally investigated using three-point-bending specimen via CGS method. The CGS interference fringe patterns obtained from experiments and simulations show a good agreement. The stress intensity factor obtained from CGS measurements shows a good agreement with finite element results under K-dominant assumption.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2005.03.043