Discriminating functional and non-functional p53 in human tumours by p53 and MDM2 immunohistochemistry

Mutation and/or loss of the TP53 tumour suppressor gene is the single most common genetic abnormality in human cancer. The majority of TP53 mutations lead to stabilization of the protein, so that immunohistochemical staining for p53 can suggest mutation status in many cases. However, various false‐p...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pathology Vol. 207; no. 3; pp. 251 - 259
Main Authors Nenutil, R, Smardova, J, Pavlova, S, Hanzelkova, Z, Muller, P, Fabian, P, Hrstka, R, Janotova, P, Radina, M, Lane, DP, Coates, PJ, Vojtesek, B
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2005
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mutation and/or loss of the TP53 tumour suppressor gene is the single most common genetic abnormality in human cancer. The majority of TP53 mutations lead to stabilization of the protein, so that immunohistochemical staining for p53 can suggest mutation status in many cases. However, various false‐positive and false‐negative situations mean that simple immunostaining for p53 is not informative in a substantial number of tumours. In the present study, a series of 119 human cancers were immunostained using a highly sensitive technique that detects the low levels of wild‐type protein expressed in normal cells, such that homozygous gene deletion or non‐sense TP53 mutation can be identified by an absence of staining. TP53 gene status was also assessed using FASAY as a genetic/functional screen and in selected cases by direct sequencing. A quantitative scoring system was employed to assess p53 levels, and p53 post‐translational modification was evaluated using antibodies that detect specific phosphorylation sites. Phosphorylated p53 correlated with total p53 levels and did not improve the prediction of TP53 mutation status. The transcriptional activity of TP53 was determined by staining for two downstream target genes, p21WAF1 and MDM2, and statistical correlations between MDM2/p21WAF1 and p53 were found in tumours with wild‐type, but not mutant TP53. Measurement of staining for p53 and MDM2 accurately identifies the TP53 status of tumours. This simple and cost‐effective method, applicable to automated staining and quantitation methods, improves the identification of TP53 status over standard methods for p53 immunostaining and provides information about tumour p53 phenotype that is complementary to genotyping data. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Bibliography:istex:2299E83C3489F7AA6806DFA4DEB761EE3F012732
ArticleID:PATH1838
ark:/67375/WNG-ZHV5N39H-B
Ministry of Health of the Czech Republic - No. NC7131-3; No. NR8338-3/2005
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3417
1096-9896
DOI:10.1002/path.1838