Altered mitochondrial functioning induced by preoperative fasting may underlie protection against renal ischemia/reperfusion injury

We reported previously that the robust protection against renal ischemia/reperfusion (I/R) injury in mice by fasting was largely initiated before the induction of renal I/R. In addition, we found that preoperative fasting downregulated the gene expression levels of complexes I, IV, and V of the mito...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular biochemistry Vol. 114; no. 1; pp. 230 - 237
Main Authors Verweij, Mariëlle, Sluiter, Wim, van den Engel, Sandra, Jansen, Eugène, IJzermans, Jan N.M., de Bruin, Ron W.F.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We reported previously that the robust protection against renal ischemia/reperfusion (I/R) injury in mice by fasting was largely initiated before the induction of renal I/R. In addition, we found that preoperative fasting downregulated the gene expression levels of complexes I, IV, and V of the mitochondrial oxidative phosphorylation (OXPHOS) system, while it did not change those of complexes II and III. Hence, we now investigated the effect of 3 days of fasting on the functioning of renal mitochondria in order to better understand our previous findings. Fasting did not affect mitochondrial density. Surprisingly, fasting significantly increased the protein expression of complex II of the mitochondrial OXPHOS system by 19%. Complex II‐driven state 3 respiratory activity was significantly reduced by fasting (46%), which could be partially attributed to the significant decrease in the enzyme activity of complex II (16%). Fasting significantly inhibited Ca2+‐dependent mitochondrial permeability transition pore opening that is directly linked to protection against renal I/R injury. The inhibition of the mitochondrial permeability transition pore did not involve the expression of the voltage‐dependent anion channel by fasting. In conclusion, 3 days of fasting clearly induces the inhibition of complex II‐driven mitochondrial respiration state 3 in part by decreasing the amount of functional complex II, and inhibits mitochondrial permeability transition pore opening. This might be a relevant sequence of events that could contribute to the protection of the kidney against I/R injury. J. Cell. Biochem. 114: 230–237, 2012. © 2012 Wiley Periodicals, Inc.
Bibliography:ArticleID:JCB24360
Dutch Kidney Foundation - No. C07-2206
istex:601AC80473F1176AD4F8686CD845125FC13054D1
ark:/67375/WNG-V631M06Z-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0730-2312
1097-4644
DOI:10.1002/jcb.24360