Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/HO-1-dependent pathway

Lung injury is a vital contributor of mortality in septic patients. Our previous studies have found that molecular hydrogen (H2), which has anti-oxidant, anti-inflammatory, and anti-apoptosis effects, had a therapeutic effect on a septic animal model through increasing expression of nuclear factor-e...

Full description

Saved in:
Bibliographic Details
Published inInternational immunopharmacology Vol. 69; pp. 11 - 18
Main Authors Yu, Yang, Yang, Yongyan, Yang, Man, Wang, Chunyan, Xie, Keliang, Yu, Yonghao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lung injury is a vital contributor of mortality in septic patients. Our previous studies have found that molecular hydrogen (H2), which has anti-oxidant, anti-inflammatory, and anti-apoptosis effects, had a therapeutic effect on a septic animal model through increasing expression of nuclear factor-erythroid 2-related factor 2 (Nrf2). The aim of this research was to investigate the effects of 2% H2 gas inhalation on sepsis-induced lung injury and its underlying mechanisms. Male wild-type (WT) and Nrf2-knockout (Nrf2-KO) ICR mice underwent sham or cecal ligation and puncture (CLP) operation. Two percent of H2 gas was inhaled for 60 min beginning at both 1 h and 6 h after sham or CLP surgery. To assess the severity of septic lung injury, the 7-day survival rate, wet/dry (W/D) weight ratio of lung tissue, lung histopathologic score, pro-inflammatory cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), high-mobility group box 1 (HMGB1)), anti-inflammatory cytokine (interleukin 10 (IL-10)), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and heme oxygenase 1 (HO-1)), and an oxidative product (malondialdehyde (MDA)) were detected after sham or CLP operation. The histopathologic changes were observed in lung tissues by hematoxylin and eosin (HE) staining, and pro-inflammatory cytokines (TNF-α and IL-6), anti-inflammatory cytokine (IL-10), antioxidant enzymes (SOD and CAT), and MDA were detected in lung tissues by an enzyme-linked immunosorbent assay (ELISA). The results indicated that 2% H2 gas treatment increased the survival rates, decreased the W/D weight ratio and the lung injury score, alleviated the injuries caused by oxidative stress and inflammation, and induced HO-1 level but reduced HMGB1 level in WT but not Krf2-KO mice. These data reveal that H2 gas could suppress lung injury in septic mice through regulation of HO-1 and HMGB1 expression and that Nrf2 plays a main role in the protective effects of H2 gas on lung damage caused by sepsis. •H2 protects against sepsis-induced lung injury in vivo.•H2 can ameliorate lung injuries through the regulation of HO-1 and HMGB1 release.•Nrf2 plays a key role in the protective effects of H2 against sepsis-induced lung injury.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1567-5769
1878-1705
DOI:10.1016/j.intimp.2019.01.022