Effect of diabetes on bradykinin-induced thermal hyperalgesia in mice
To investigate the role of protein kinase C in the attenuation of bradykinin-induced thermal hyperalgesia in diabetic mice, we examined the effects of a protein kinase C activator or inhibitor on the i.t. bradykinin-induced hyperalgesia in diabetic and non-diabetic mice. Intrathecal injection of bra...
Saved in:
Published in | European journal of pharmacology Vol. 390; no. 1; pp. 113 - 118 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
25.02.2000
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To investigate the role of protein kinase C in the attenuation of bradykinin-induced thermal hyperalgesia in diabetic mice, we examined the effects of a protein kinase C activator or inhibitor on the i.t. bradykinin-induced hyperalgesia in diabetic and non-diabetic mice. Intrathecal injection of bradykinin caused a transient antinociceptive effect, which diminished within 30 min, and then produced a thermal hyperalgesia, which lasted about 120 min, in non-diabetic mice. Although the duration of the antinociceptive phase was longer in diabetic mice than in non-diabetic mice, the hyperalgesic response was not observed in diabetic mice. The bradykinin-induced hyperalgesia was dose-dependently and significantly enhanced by pretreatment with calphostin C (0.3 to 3 pmol, i.t.), a specific protein kinase C inhibitor, in diabetic mice. However, calphostin C (3 pmol, i.t.) had no significant effect on bradykinin-induced hyperalgesia in non-diabetic mice. On the other hand, pretreatment with phorbol-12, 13-dibutyrate (12.5 to 50 pmol, i.t.), a protein kinase C activator, significantly and dose-dependently reduced bradykinin-induced hyperalgesia in non-diabetic mice. However, phorbol-12, 13-dibutyrate (50 pmol, i.t.) had no significant effect on bradykinin-induced hyperalgesia in diabetic mice. These results suggest that the change in bradykinin-induced thermal hyperalgesia in diabetic mice may be due, at least in part, to the modification of nociceptive transmission in the spinal cord by the activation of protein kinase C. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/S0014-2999(99)00917-6 |