Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis

The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and mai...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 6; no. 44
Main Authors Fang, Fei, Schwartz, Andrea G, Moore, Emily R, Sup, McKenzie E, Thomopoulos, Stavros
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and maintained. We tested the hypothesis that the primary cilium is a hub for transducing biophysical and hedgehog (Hh) signals to regulate tendon enthesis formation and adaptation to loading. Primary cilia were necessary for enthesis development, and cilia assembly was coincident with Hh signaling and enthesis mineralization. Cilia responded inversely to loading; increased loading led to decreased cilia and decreased loading led to increased cilia. Enthesis responses to loading were dependent on Hh signaling through cilia. Results imply a role for tendon enthesis primary cilia as mechanical responders and Hh signal transducers, providing a therapeutic target for tendon enthesis pathologies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abc1799