A Maximal Function Associated to the Curve (t, t2)

The authors prove that Mf(x, y) = $\underset h>0\to{\sup}$ (1/h) ∫-hh|(f(x - t, y - t2)|dt is bounded from Lp(R2) to Lp(R2) for 1 < p ≤ ∞ .

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 73; no. 5; pp. 1416 - 1417
Main Authors Nagel, Alexander, Riviere, Nestor, Wainger, Stephen
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences of the United States of America 01.05.1976
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The authors prove that Mf(x, y) = $\underset h>0\to{\sup}$ (1/h) ∫-hh|(f(x - t, y - t2)|dt is bounded from Lp(R2) to Lp(R2) for 1 < p ≤ ∞ .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.73.5.1416