A Maximal Function Associated to the Curve (t, t2)
The authors prove that Mf(x, y) = $\underset h>0\to{\sup}$ (1/h) ∫-hh|(f(x - t, y - t2)|dt is bounded from Lp(R2) to Lp(R2) for 1 < p ≤ ∞ .
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 73; no. 5; pp. 1416 - 1417 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences of the United States of America
01.05.1976
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The authors prove that Mf(x, y) = $\underset h>0\to{\sup}$ (1/h) ∫-hh|(f(x - t, y - t2)|dt is bounded from Lp(R2) to Lp(R2) for 1 < p ≤ ∞ . |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.73.5.1416 |