Nonlinear Dynamics of a Micromechanical Torsional Resonator: Analytical Model and Experiments

Mechanical microoscillators have been valuable tools for magnetic measurements of microscopic samples. This paper presents an analytical model for the dynamics of an electrostatically actuated torsional oscillator and validates it experimentally. While, at low excitations, the system is well describ...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 18; no. 6; pp. 1396 - 1400
Main Authors Antonio, D., Pastoriza, H.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mechanical microoscillators have been valuable tools for magnetic measurements of microscopic samples. This paper presents an analytical model for the dynamics of an electrostatically actuated torsional oscillator and validates it experimentally. While, at low excitations, the system is well described by a damped linear oscillator, at higher oscillation amplitudes, a nonlinear regime is observed. Nonlinearity is originated exclusively by the electrostatic driving and detection and can be tuned by modifying the excitation or detection bias voltages. The parameters of the analytical model are obtained from the device dimensions and material properties. No empirical or fitting parameters are needed except for the quality factor, which is extracted from the linear resonance curve. The proposed model can be a valuable and straightforward tool for the design and analysis of many other similar devices based on electrostatically actuated mechanical resonators.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2009.2034336