Energy-Efficient Distributed Spectrum Sensing for Cognitive Sensor Networks

Reliability and energy consumption in detection are key objectives for distributed spectrum sensing in cognitive sensor networks. In conventional distributed sensing approaches, although the detection performance improves with the number of radios, so does the network energy consumption. We consider...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 11; no. 3; pp. 565 - 573
Main Authors Maleki, S, Pandharipande, A, Leus, G
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reliability and energy consumption in detection are key objectives for distributed spectrum sensing in cognitive sensor networks. In conventional distributed sensing approaches, although the detection performance improves with the number of radios, so does the network energy consumption. We consider a combined sleeping and censoring scheme as an energy efficient spectrum sensing technique for cognitive sensor networks. Our objective is to minimize the energy consumed in distributed sensing subject to constraints on the detection performance, by optimally choosing the sleeping and censoring design parameters. The constraint on the detection performance is given by a minimum target probability of detection and a maximum permissible probability of false alarm. Depending on the availability of prior knowledge about the probability of primary user presence, two cases are considered. The case where a priori knowledge is not available defines the blind setup; otherwise the setup is called knowledge-aided. By considering a sensor network based on IEEE 802.15.4/ZigBee radios, we show that significant energy savings can be achieved by the proposed scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2010.2051327