Titanium alloys and their machinability—a review

Although there have been great advances in the development of cutting tool materials which have significantly improved the machinability of a large number of metallic materials, including cast irons, steels and some high temperature alloys such as nickel-based alloys, no equivalent development has b...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials processing technology Vol. 68; no. 3; pp. 262 - 274
Main Authors Ezugwu, E.O., Wang, Z.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.1997
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although there have been great advances in the development of cutting tool materials which have significantly improved the machinability of a large number of metallic materials, including cast irons, steels and some high temperature alloys such as nickel-based alloys, no equivalent development has been made for cutting titanium alloys due primarily to their peculiar characteristics. This paper reviews the main problems associated with the machining of titanium as well as tool wear and the mechanisms responsible for tool failure. It was found that the straight tungsten carbide (WC/Co) cutting tools continue to maintain their superiority in almost all machining processes of titanium alloys, whilst CVD coated carbides and ceramics have not replaced cemented carbides due to their reactivity with titanium and their relatively low fracture toughness as well as the poor thermal conductivity of most ceramics. This paper also discusses special machining methods, such as rotary cutting and the use of ledge tools, which have shown some success in the machining of titanium alloys.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0924-0136
DOI:10.1016/S0924-0136(96)00030-1