Coreduction Homology Algorithm
This paper presents a new reduction algorithm for the efficient computation of the homology of cubical sets and polotypes. The algorithm—particularly strong for low-dimensional sets embedded in high dimensions—runs in linear time. The paper presents the theoretical background of the algorithm, the a...
Saved in:
Published in | Discrete & computational geometry Vol. 41; no. 1; pp. 96 - 118 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer-Verlag
2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a new reduction algorithm for the efficient computation of the homology of cubical sets and polotypes. The algorithm—particularly strong for low-dimensional sets embedded in high dimensions—runs in linear time. The paper presents the theoretical background of the algorithm, the algorithm itself, experimental results based on an implementation for cubical sets as well as some theoretical complexity estimates. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-008-9073-y |