Fabrication of 20 nm half-pitch gratings by corrugation-directed self-assembly
The evolution of the scaling of modern semiconductor devices is governed by the ability to create scalable high-resolution patterns on substrates. Since it is becoming increasingly difficult and expensive to extend to smaller dimensions using optical lithography, there is a great deal of interest in...
Saved in:
Published in | Nanotechnology Vol. 19; no. 23; p. 235301 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
11.06.2008
|
Online Access | Get full text |
Cover
Loading…
Summary: | The evolution of the scaling of modern semiconductor devices is governed by the ability to create scalable high-resolution patterns on substrates. Since it is becoming increasingly difficult and expensive to extend to smaller dimensions using optical lithography, there is a great deal of interest in alternative patterning methods. The self-assembly of block copolymers in thin films, which provides periodic patterns of 10-50 nm length scales, has been recognized as a promising candidate for such patterning. To be practical, however, this approach must provide control over the orientation and lateral placement of the microdomains. We report here our discovery of the controlled alignment of the lamellar microdomains of a block copolymer containing hybrid material using topographic pre-patterns on substrates. We find that this hybrid material forms lamellae with a half-pitch of approximately 20 nm perpendicular to the lines of a surface corrugation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/19/23/235301 |