Effect of nitrate concentration, pH, and hydraulic retention time on autotrophic denitrification efficiency with Fe(II) and Mn(II) as electron donors

The role of electron donors (Fe(2+) and Mn(2+)) in the autotrophic denitrification of contaminated groundwater by bacterial strain SY6 was characterized based on empirical laboratory-scale analysis. Strain SY6 can utilize Fe(2+) more efficiently than Mn(2+) as an electron donor. This study has shown...

Full description

Saved in:
Bibliographic Details
Published inWater science and technology Vol. 74; no. 5; pp. 1185 - 1192
Main Authors Su, Jun-Feng, Shi, Jing-Xin, Huang, Ting-Lin, Ma, Fang, Lu, Jin-Suo, Yang, Shao-Fei
Format Journal Article
LanguageEnglish
Published England IWA Publishing 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The role of electron donors (Fe(2+) and Mn(2+)) in the autotrophic denitrification of contaminated groundwater by bacterial strain SY6 was characterized based on empirical laboratory-scale analysis. Strain SY6 can utilize Fe(2+) more efficiently than Mn(2+) as an electron donor. This study has shown that the highest nitrate removal ratio, observed with Fe(2+) as the electron donor, was approximately 88.89%. An immobilized biological filter reactor was tested by using three levels of influent nitrate (10, 30, and 50 mg/L), three pH levels (6, 7, and 8), and three levels of hydraulic retention time (HRT; 6, 8, and 12 h), respectively. An optimal nitrate removal ratio of about 95% was achieved at pH 6.0 using a nitrate concentration of 50 mg/L and HRT of 12 h with Fe(2+) as an electron donor. The study showed that 90% of Fe(2+) and 75.52% removal of Mn(2+) were achieved at pH 8.0 with a nitrate concentration of 50 mg/L and a HRT of 12 h. Removal ratio of Fe(2+) and Mn(2+) is higher with higher influent nitrate and HRT. A weakly alkaline environment assisted the removal of Fe(2+) and Mn(2+).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2016.231