N-Acetylcysteine inhibit the translocation of mixed lineage kinase-3 from cytosol to plasma membrane during transient brain ischemia in rat hippocampus
Mixed lineage kinase-3 (MLK3) is a recently described member of the MLK subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase (MAPK) pathways. In this study, we investigated the translocation of MLK3 during transient cerebral ischemia in rat hippocampus. Transient...
Saved in:
Published in | Neuroscience letters Vol. 391; no. 1; pp. 38 - 42 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Shannon
Elsevier Ireland Ltd
31.12.2005
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mixed lineage kinase-3 (MLK3) is a recently described member of the MLK subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase (MAPK) pathways. In this study, we investigated the translocation of MLK3 during transient cerebral ischemia in rat hippocampus. Transient brain ischemia was induced by the four-vessel occlusion in Sprague–Dawley rats. Our data show that MLK3 can translocate from cytosolic fraction to the membrane fraction during ischemia and the increased MLK3 in the membrane fraction bind to postsynaptic density protein 95 (PSD-95). The antioxidant
N-acetylcysteine (NAC) could inhibit the translocation of MLK3 from cytosolic fraction to the membrane fraction and decrease the interactions of MLK3 and PSD-95 in the membrane fraction. Consequently, these results indicate that reactive oxygen species (ROS) was closely associated with MLK3 translocation induced by transient global ischemia in rat hippocampus. |
---|---|
ISSN: | 0304-3940 1872-7972 |
DOI: | 10.1016/j.neulet.2005.08.029 |