A 3D disease and regeneration model of peripheral nervous system-on-a-chip

Demyelinating diseases involve loss of myelin sheaths and eventually lead to neurological problems. Unfortunately, the precise mechanisms remain unknown, and there are no effective therapies. To overcome these limitations, a reliable and physiologically relevant in vitro model is required. Here, we...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 7; no. 5
Main Authors Hyung, Sujin, Lee, Seung-Ryeol, Kim, Jiho, Kim, Youngtaek, Kim, Suryong, Kim, Hong Nam, Jeon, Noo Li
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 29.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Demyelinating diseases involve loss of myelin sheaths and eventually lead to neurological problems. Unfortunately, the precise mechanisms remain unknown, and there are no effective therapies. To overcome these limitations, a reliable and physiologically relevant in vitro model is required. Here, we present a three-dimensional peripheral nervous system (PNS) microfluidic platform that recapitulates the full spectrum of myelination, demyelination, and remyelination using primary Schwann cells (SCs) and motor neurons (MNs). The platform enables reproducible hydrogel patterning and long-term stable coculture of MNs and SCs over 40 days in vitro based on three distinct design factors. Furthermore, the on-demand detachable substrate allows in-depth biological analysis. We demonstrated the possibility of mimicking segmental demyelination by lysophosphatidylcholine, and recovery of myelin structure by application of two drugs: benzatropine or methylcobalamin. This 3D PNS disease-on-a-chip may serve as a potential platform for understanding the pathophysiology of demyelination and screening drugs for remyelination.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abd9749