Multi-Agent Distributed Optimization via Inexact Consensus ADMM

Multi-agent distributed consensus optimization problems arise in many signal processing applications. Recently, the alternating direction method of multipliers (ADMM) has been used for solving this family of problems. ADMM based distributed optimization method is shown to have faster convergence rat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 63; no. 2; pp. 482 - 497
Main Authors Chang, Tsung-Hui, Hong, Mingyi, Wang, Xiangfeng
Format Journal Article
LanguageEnglish
Published New York IEEE 15.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-agent distributed consensus optimization problems arise in many signal processing applications. Recently, the alternating direction method of multipliers (ADMM) has been used for solving this family of problems. ADMM based distributed optimization method is shown to have faster convergence rate compared with classic methods based on consensus subgradient, but can be computationally expensive, especially for problems with complicated structures or large dimensions. In this paper, we propose low-complexity algorithms that can reduce the overall computational cost of consensus ADMM by an order of magnitude for certain large-scale problems. Central to the proposed algorithms is the use of an inexact step for each ADMM update, which enables the agents to perform cheap computation at each iteration. Our convergence analyses show that the proposed methods converge well under some convexity assumptions. Numerical results show that the proposed algorithms offer considerably lower computational complexity than the standard ADMM based distributed optimization methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2367458