Prospect of Recording Technologies for Higher Storage Performance

With the progress of information technology (IT), we need more advanced storage devices to accommodate the unprecedented expansion of information and the rapidly changing IT environment. Magnetic and optical recording storage devices, such as hard disk drive (HDD) and optical disk drive (ODD), are t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 47; no. 3; pp. 539 - 545
Main Authors Park, Kyoung-Su, Park, Young-Pil, Park, No-Cheol
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the progress of information technology (IT), we need more advanced storage devices to accommodate the unprecedented expansion of information and the rapidly changing IT environment. Magnetic and optical recording storage devices, such as hard disk drive (HDD) and optical disk drive (ODD), are the best candidates for satisfying these demands and requirements. For 10 Tb/in 2 HDD magnetic recording, we need to develop several advanced and innovative technologies related to the head disk interface (HDI), head/media, servo, and signal processing in current perpendicular magnetic recording (PMR). And, several new read/write mechanisms, such as heat-assisted magnetic recording (HAMR) and bit-patterned media (BPM), are being investigated by many researchers at several institutes around the world. In optical data storage, the page-based holographic data storage system (HDSS) and micro-HDSS are expected to achieve a higher user capacity with beyond terabyte. The near field recording (NFR) system was developed to confirm the feasibility of achieving a multiple terabyte capacity, and currently, through the application of NF nanogap servo system using a flexible media, it is possible to enhance the recording density and data transfer rate together.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2010.2102343