Effect of Ring Resonator Waveguide Loss on SFDR Performance of Highly Linear Optical Modulators Under Suboctave Operation

We investigate the effect of ring resonator (RR) waveguide loss on the spurious-free-dynamic-range (SFDR) performance of two types of highly linear, resonator-enhanced optical modulators, namely, 1) the Resonator-Assisted Mach-Zehnder Interferometer (RAMZI) modulator, and 2) the Interferometric Modu...

Full description

Saved in:
Bibliographic Details
Published inIEEE photonics technology letters Vol. 22; no. 17; pp. 1297 - 1299
Main Authors Prescod, A, Dingel, B B, Madamopoulos, N, Madabhushi, R
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the effect of ring resonator (RR) waveguide loss on the spurious-free-dynamic-range (SFDR) performance of two types of highly linear, resonator-enhanced optical modulators, namely, 1) the Resonator-Assisted Mach-Zehnder Interferometer (RAMZI) modulator, and 2) the Interferometric Modulator with Phase-modulating And Cavity-modulating Components (IMPACC). We show that the respective SFDR values of both traveling-wave RAMZI and traveling-wave IMPACC degrade by as much as 20 dB from their peak values when the RR waveguide loss increases by 20%. However, unlike RAMZI, the IMPACC design allows for SFDR compensation (from 114 to 132 dB) by simply adjusting one of its externally accessible parameter controls-the radio-frequency power split ratio, under suboctave operation. This unique feature of IMPACC provides optimum performance, adds greater design flexibility, and increases manufacturing tolerance.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Conference-3
SourceType-Conference Papers & Proceedings-2
ISSN:1041-1135
1941-0174
DOI:10.1109/LPT.2010.2053842