Effects of retinoic acid on airspace development and lung collagen in hyperoxia-exposed newborn rats

Impaired septal formation and decreased alveolarization are often caused by hyperoxic injury to the developing lung and are characteristic features of bronchopulmonary dysplasia. Dexamethasone, frequently administered to infants during oxygen exposure, also inhibits septal formation in the newborn l...

Full description

Saved in:
Bibliographic Details
Published inPediatric research Vol. 48; no. 4; pp. 434 - 444
Main Authors VENESS-MEEHAN, Kathleen A, BOTTONE, Frank G, STILES, Alan D
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 01.10.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Impaired septal formation and decreased alveolarization are often caused by hyperoxic injury to the developing lung and are characteristic features of bronchopulmonary dysplasia. Dexamethasone, frequently administered to infants during oxygen exposure, also inhibits septal formation in the newborn lung. Vitamin A administration reduces the incidence of bronchopulmonary dysplasia in vitamin A-deficient premature infants, and retinoic acid improves alveolarization in newborn rats treated with dexamethasone, indicating that retinoic acid may be useful in preventing hyperoxia-induced impaired septation in bronchopulmonary dysplasia. To investigate whether treatment with retinoic acid during exposure to hyperoxia would improve septal formation, newborn rats exposed to > or =90% O(2) from d 3 of life to d 14 were treated with retinoic acid (d 3-13 of life) and/or dexamethasone (d 4-13 of life). In contrast with the effects of retinoic acid on dexamethasone-induced inhibition of alveolarization, we found that retinoic acid did not improve septal formation or decrease airspace size in animals exposed to hyperoxia alone or to hyperoxia plus dexamethasone. Retinoic acid did, however, increase collagen in airspace walls as demonstrated by staining and immunohistochemistry. There was no increase in procollagen mRNA by Northern hybridization analysis, indicating that retinoic acid-associated increases in lung collagen are likely due to posttranscriptional regulation. There was a trend toward increased survival in hyperoxia in animals treated with retinoic acid to the extent that combined therapy with retinoic acid and dexamethasone resulted in the greatest improvement in animal survival. These results suggest that although retinoic acid may be of benefit in hyperoxia-induced lung injury and may have important effects on lung matrix, it does not prevent impairment of septation or induce alveolar formation during exposure to hyperoxia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-3998
1530-0447
DOI:10.1203/00006450-200010000-00004