Responses of the extrapyramidal and limbic substance P systems to ibogaine and cocaine treatments

Ibogaine is an indolamine found in the West Africa shrub, Tabernanthe iboga, and has been proposed for the treatment of addiction to central nervous system (CNS) stimulants such as cocaine and amphetamine. The mechanism of ibogaine action and its suitability as a treatment for drug addiction still r...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmacology Vol. 390; no. 1; pp. 119 - 126
Main Authors Alburges, Mario E, Ramos, Brian P, Bush, Lloyd, Hanson, Glen R
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 25.02.2000
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ibogaine is an indolamine found in the West Africa shrub, Tabernanthe iboga, and has been proposed for the treatment of addiction to central nervous system (CNS) stimulants such as cocaine and amphetamine. The mechanism of ibogaine action and its suitability as a treatment for drug addiction still remains unclear. Since previous studies demonstrated differential effects of stimulants of abuse (amphetamines) on neuropeptide systems such as substance P, we examined the impact of ibogaine and cocaine on extrapyramidal (striatum and substantia nigra) and limbic (nucleus accumbens and frontal cortex) substance P-like immunoreactivity. Ibogaine and cocaine treatments altered substance P systems by increasing striatal and nigral substance P-like immunoreactivity concentration 12 h after the last drug treatment. However, substance P-like immunoreactivity content was not significantly increased in nucleus accumbens after treatment with either drug. The ibogaine- and cocaine-induced increases in substance P-like immunoreactivity in striatum and substantia nigra were blocked by coadministration of selective dopamine D 1 receptor antagonist (SCH 23390; R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride) or dopamine D 2 receptor antagonist (eticlopride; S(−)-3-Chloro-5-ethyl- N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxy-benzamide hydrochloride). Most of the responses by substance P systems to ibogaine administration resembled those caused by cocaine, except in cortical tissue where multiple administration of cocaine, but not ibogaine increased substance P-like immunoreactivity. These data suggest that substance P systems may contribute to the effects of ibogaine and cocaine treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-2999
1879-0712
DOI:10.1016/S0014-2999(99)00919-X