Expected number of real zeros of random hyperbolic polynomial

If g 1, g 2,…, g n are independent, normally distributed random variables with mean zero and variance one, then the expected number of zeros of a polynomial of the form g 1 cosh t+g 2 cosh 2t+g 3 cosh 3t+⋯+g n cosh nt , for large values of n, is 1 π log n+C+ o(1) where C=0.038… .

Saved in:
Bibliographic Details
Published inStatistics & probability letters Vol. 70; no. 1; pp. 11 - 18
Main Author Mahanti, Mina Ketan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.10.2004
Elsevier
SeriesStatistics & Probability Letters
Subjects
Online AccessGet full text
ISSN0167-7152
1879-2103
DOI10.1016/j.spl.2004.06.017

Cover

More Information
Summary:If g 1, g 2,…, g n are independent, normally distributed random variables with mean zero and variance one, then the expected number of zeros of a polynomial of the form g 1 cosh t+g 2 cosh 2t+g 3 cosh 3t+⋯+g n cosh nt , for large values of n, is 1 π log n+C+ o(1) where C=0.038… .
ISSN:0167-7152
1879-2103
DOI:10.1016/j.spl.2004.06.017