Are joint torque models limited by an assumption of monoarticularity?
This study determines whether maximal voluntary ankle plantar flexor torque could be more accurately represented using a torque generator that is a function of both knee and ankle kinematics. Isovelocity and isometric ankle plantar flexor torques were measured on a single participant for knee joint...
Saved in:
Published in | Journal of applied biomechanics Vol. 28; no. 5; p. 520 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2012
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | This study determines whether maximal voluntary ankle plantar flexor torque could be more accurately represented using a torque generator that is a function of both knee and ankle kinematics. Isovelocity and isometric ankle plantar flexor torques were measured on a single participant for knee joint angles of 111° to 169° (approximately full extension) using a Contrex MJ dynamometer. Maximal voluntary torque was represented by a 19-parameter two-joint function of ankle and knee joint angles and angular velocities with the parameters determined by minimizing a weighted root mean square difference between measured torques and the two-joint function. The weighted root mean square difference between the two-joint function and the measured torques was 10 N-m or 3% of maximum torque. The two-joint function was a more accurate representation of maximal voluntary ankle plantar flexor torques than an existing single-joint function where differences of 19% of maximum torque were found. It is concluded that when the knee is flexed by more than 40°, a two-joint representation is necessary. |
---|---|
ISSN: | 1543-2688 |
DOI: | 10.1123/jab.28.5.520 |