A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis
Chronic hepatitis B is one of the world’s unconquered diseases with more than 240 million infected subjects at risk of developing liver disease and hepatocellular carcinoma. Hepatitis B virus reverse transcribes pre-genomic RNA to relaxed circular DNA (rcDNA) that comprises the infectious particle....
Saved in:
Published in | Life science alliance Vol. 2; no. 2; p. e201900355 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Life Science Alliance LLC
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chronic hepatitis B is one of the world’s unconquered diseases with more than 240 million infected subjects at risk of developing liver disease and hepatocellular carcinoma. Hepatitis B virus reverse transcribes pre-genomic RNA to relaxed circular DNA (rcDNA) that comprises the infectious particle. To establish infection of a naïve target cell, the newly imported rcDNA is repaired by host enzymes to generate covalently closed circular DNA (cccDNA), which forms the transcriptional template for viral replication. SAMHD1 is a component of the innate immune system that regulates deoxyribonucleoside triphosphate levels required for host and viral DNA synthesis. Here, we show a positive role for SAMHD1 in regulating cccDNA formation, where KO of SAMHD1 significantly reduces cccDNA levels that was reversed by expressing wild-type but not a mutated SAMHD1 lacking the nuclear localization signal. The limited pool of cccDNA in infected
Samhd1
KO cells is transcriptionally active, and we observed a 10-fold increase in newly synthesized rcDNA-containing particles, demonstrating a dual role for SAMHD1 to both facilitate cccDNA genesis and to restrict reverse transcriptase-dependent particle genesis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2575-1077 2575-1077 |
DOI: | 10.26508/lsa.201900355 |