Characterization of genomic breakpoints in MLL and CBP in leukemia patients with t(11;16)

The recurring chromosome translocation t(11;16)(q23;p13) is detected in leukemia patients, virtually all of whom have received previous chemotherapy with topoisomerase (topo) II inhibitors. In the t(11;16), 3′ CBP, on 16p13, is fused to 5′ MLL, on 11q23, resulting in an MLL–CBP fusion gene that play...

Full description

Saved in:
Bibliographic Details
Published inGenes chromosomes & cancer Vol. 41; no. 3; pp. 257 - 265
Main Authors Zhang, Yanming, Zeleznik-Le, Nancy, Emmanuel, Neelmini, Jayathilaka, Nimanthi, Chen, Jianjun, Strissel, Pamela, Strick, Reiner, Li, Loretta, Neilly, Mary Beth, Taki, Tomohiko, Hayashi, Yasuhide, Kaneko, Yasuhiko, Schlegelberger, Brigitte, Rowley, Janet D.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The recurring chromosome translocation t(11;16)(q23;p13) is detected in leukemia patients, virtually all of whom have received previous chemotherapy with topoisomerase (topo) II inhibitors. In the t(11;16), 3′ CBP, on 16p13, is fused to 5′ MLL, on 11q23, resulting in an MLL–CBP fusion gene that plays an important role in leukemogenesis. In this study, we cloned genomic breakpoints of the MLL and CBP genes in the t(11;16) in the SN‐1 cell line and in five patients with therapy‐related leukemia, all of whom had received topo II inhibitors for previous tumors. In all patients except one, both the genomic MLL–CBP and the reciprocal fusions were cloned. Genomic breakpoints in MLL occurred in the 8.3‐kb breakpoint cluster region in all patients, whereas the breakpoints in CBP clustered in an 8.2‐kb region of intron 3 in four patients. Genomic breakpoints in MLL occurred in intron 11 near the topo II cleavage site in the SN‐1 cell line and in one patient, and they were close to LINE repetitive sequences in two other patients. In the remaining two patients, genomic breakpoints were in intron 9 in Alu repeats. Genomic breakpoints in CBP occurred in and around Alu repeats in one and two patients, respectively. In two patients, the breaks were near LINE repetitive sequences, suggesting that repetitive DNA sequences may play a role. No specific recombination motifs were identified at or near the breakpoint junctions. No topo II cleavage sites were detected in introns 2 and 3 of CBP. However, there were deletions and duplications at the breakpoints in both MLL and CBP and microhomologies or nontemplated nucleotides at most of the genomic fusion junctions, suggesting that a nonhomologous end‐joining repair mechanism was involved in the t(11;16). © 2004 Wiley‐Liss, Inc.
Bibliography:Spastic Paralysis Research Foundation of the Illinois-Eastern Iowa Chapter of Kiwanis International
istex:A5F780D7883760BB6A1D966FD79D063953A7D071
National Institutes of Health/National Cancer Institute - No. CA40046; No. CA84405
ark:/67375/WNG-VF779GBL-2
ArticleID:GCC20077
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1045-2257
1098-2264
DOI:10.1002/gcc.20077