Repeated measures random forests (RMRF): Identifying factors associated with nocturnal hypoglycemia

Nocturnal hypoglycemia is a common phenomenon among patients with diabetes and can lead to a broad range of adverse events and complications. Identifying factors associated with hypoglycemia can improve glucose control and patient care. We propose a repeated measures random forest (RMRF) algorithm t...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 77; no. 1; pp. 343 - 351
Main Authors Calhoun, Peter, Levine, Richard A., Fan, Juanjuan
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nocturnal hypoglycemia is a common phenomenon among patients with diabetes and can lead to a broad range of adverse events and complications. Identifying factors associated with hypoglycemia can improve glucose control and patient care. We propose a repeated measures random forest (RMRF) algorithm that can handle nonlinear relationships and interactions and the correlated responses from patients evaluated over several nights. Simulation results show that our proposed algorithm captures the informative variable more often than naïvely assuming independence. RMRF also outperforms standard random forest and extremely randomized trees algorithms. We demonstrate scenarios where RMRF attains greater prediction accuracy than generalized linear models. We apply the RMRF algorithm to analyze a diabetes study with 2524 nights from 127 patients with type 1 diabetes. We find that nocturnal hypoglycemia is associated with HbA1c, bedtime blood glucose (BG), insulin on board, time system activated, exercise intensity, and daytime hypoglycemia. The RMRF can accurately classify nights at high risk of nocturnal hypoglycemia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0006-341X
1541-0420
1541-0420
DOI:10.1111/biom.13284