A Survey on Differential Privacy for Medical Data Analysis

Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage...

Full description

Saved in:
Bibliographic Details
Published inAnnals of data science Vol. 11; no. 2; pp. 733 - 747
Main Authors Liu, WeiKang, Zhang, Yanchun, Yang, Hong, Meng, Qinxue
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2198-5804
2198-5812
2198-5812
DOI10.1007/s40745-023-00475-3

Cover

Loading…
Abstract Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications.
AbstractList Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications.
Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications.Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications.
Author Liu, WeiKang
Meng, Qinxue
Yang, Hong
Zhang, Yanchun
Author_xml – sequence: 1
  givenname: WeiKang
  surname: Liu
  fullname: Liu, WeiKang
  email: dpstudier@e.gzhu.edu.cn
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University
– sequence: 2
  givenname: Yanchun
  surname: Zhang
  fullname: Zhang, Yanchun
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Institute of Sustainable Industries and Liveable Cities, Victoria University
– sequence: 3
  givenname: Hong
  surname: Yang
  fullname: Yang, Hong
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University
– sequence: 4
  givenname: Qinxue
  surname: Meng
  fullname: Meng, Qinxue
  organization: College of Information Engineering, Suzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38625247$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1P3DAQtSoqPrb8gR6qSL30Ejr-SmIu1YrPSiAqtT1bE8emRtkY7GSl_ff1snQpHDjNaPzemzd-B2RnCIMl5COFIwpQf00CaiFLYLwEELUs-Tuyz6hqStlQtrPtQeyRw5TuAIBRkeFyl-zxpmKSiXqfHM-Ln1Nc2lURhuLUO2ejHUaPffEj-iWaVeFCLK5t502eneKIxXzAfpV8-kDeO-yTPXyqM_L7_OzXyWV5dXPx_WR-VRqugJeVMtYaDgwq0wkAVEARRdWIzlUSK-EEckNF2zHbqIq3LXXKUckV66BFxWfk20b3fmoXtjPZX8Re30e_wLjSAb1--TL4P_o2LDUFJmtas6zw5UkhhofJplEvfDK273GwYUqaA1cNKJrrjHx-Bb0LU8wXJ81UzblgUq0tffrf0tbLv3_NALYBmBhSitZtIRT0Oj-9yU_nQPRjfppnUvOKZPyIow_rs3z_NpVvqCnvGW5tfLb9BusvQbWsyQ
CitedBy_id crossref_primary_10_1007_s11864_024_01285_2
crossref_primary_10_1016_j_mcpdig_2024_09_005
crossref_primary_10_3390_electronics14020326
crossref_primary_10_59717_j_xinn_life_2024_100079
crossref_primary_10_1098_rsos_230806
crossref_primary_10_1115_1_4067210
crossref_primary_10_1038_s41598_024_83972_6
crossref_primary_10_1109_ACCESS_2024_3467049
Cites_doi 10.1016/j.knosys.2021.107325
10.1109/ACCESS.2018.2799522
10.26599/TST.2018.9010037
10.1155/2015/370194
10.48550/arXiv.1902.08874
10.48550/arXiv.2007.11524
10.1093/bioinformatics/btaa475
10.1016/j.ins.2022.09.003
10.1145/1217299.1217302
10.1609/aaai.v35i10.17123
10.1145/3442381.3449962
10.48550/arXiv.1710.01727
10.1024/1661-8157/a001657
10.1145/2810103.2813610
10.1007/s12243-016-0498-7
10.1007/s40745-017-0112-5
10.1016/j.ins.2019.04.011
10.1371/journal.pone.0207639
10.1109/TCYB.2020.3027962
10.1145/3460120.3484565
10.1145/2487575.2487687
10.1145/2767007
10.1038/s41598-022-05539-7
10.1109/FOCS.2013.53
10.1007/978-3-319-59575-7_20
10.1007/978-981-16-3607-3
10.1371/journal.pone.0272766
10.12267/j.issn.2096-5931.2021.06.001
10.11772/j.issn.1001-9081.2019111929
10.1093/bioinformatics/btac759
10.1007/978-0-85729-504-0
10.1609/aaai.v30i1.10169
10.1038/s41598-021-93030-0
10.1007/s40745-022-00406-8
10.1109/SP.2019.00019
10.1145/3547139
10.1007/s00500-021-05692-7
10.1007/s00778-021-00718-w
10.1145/2810103.2813687
10.1145/2660267.2660348
10.1109/TKDE.2023.3239842
10.1145/3438872.3439097
10.1109/TIFS.2015.2472369
10.1038/s41598-022-19544-3
10.1371/journal.pone.0255979
10.3390/s20247030
10.1109/GLOBECOM38437.2019.9014259
10.1145/2976749.2978318
10.1109/ICDE.2007.367856
10.1145/3508398.3511519
10.1016/j.xinn.2020.100023
10.1109/GLOCOM.2016.7842173
10.1007/11787006_1
10.11959/j.issn.2096-0271.2016001
10.1016/j.eclinm.2020.100354
10.1145/2976749.2976751
10.13328/j.cnki.jos.005364
10.1145/2665943.2665945
10.1561/0400000042
10.1093/bib/bbab051
10.1142/S0218488502001648
10.48550/arXiv.2210.00538
10.1007/s40745-022-00378-9
10.1109/JBHI.2021.3123643
10.1109/TII.2019.2938778
10.1109/TIFS.2016.2636090
10.1109/ACCESS.2019.2947295
10.1142/9789811232701_0003
10.1007/978-3-031-20891-1_24
10.1109/PDCAT46702.2019.00036
10.1093/bioinformatics/btz837
10.1016/j.jbi.2014.01.008
10.1109/TKDE.2022.3178153
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2024
DBID AAYXX
CITATION
NPM
3V.
7WY
7WZ
7XB
87Z
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
L.-
M0C
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
7X8
5PM
DOI 10.1007/s40745-023-00475-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Computer Science
EISSN 2198-5812
EndPage 747
ExternalDocumentID PMC10257172
38625247
10_1007_s40745_023_00475_3
Genre Journal Article
Review
GroupedDBID 0R~
203
4.4
406
7WY
8FL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKFA
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFDZB
AFKRA
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AYFIA
AYQZM
AZFZN
BAPOH
BENPR
BEZIV
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
HCIFZ
HVGLF
IKXTQ
IWAJR
IXD
J-C
JZLTJ
KOV
LLZTM
M0C
M4Y
NB0
NPVJJ
NQJWS
NU0
O9J
PHGZT
PQBIZ
PQBZA
PQQKQ
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
NPM
PQGLB
3V.
7XB
8FE
8FG
8FK
K60
K6~
L.-
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c3903-69ceec30206cd400a901aa4684df65a64f4a3c14bd2e8963bb1f9f15392d0ba93
IEDL.DBID AGYKE
ISSN 2198-5804
2198-5812
IngestDate Thu Aug 21 18:37:40 EDT 2025
Fri Jul 11 10:50:21 EDT 2025
Fri Jul 25 20:56:05 EDT 2025
Mon Jul 21 06:02:58 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Sun Jul 06 05:09:51 EDT 2025
Thu Apr 10 07:53:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Medical data
Differential privacy
Data publishing
Privacy computing
Language English
License The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3903-69ceec30206cd400a901aa4684df65a64f4a3c14bd2e8963bb1f9f15392d0ba93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10257172
PMID 38625247
PQID 2973342599
PQPubID 2044270
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10257172
proquest_miscellaneous_3039809130
proquest_journals_2973342599
pubmed_primary_38625247
crossref_primary_10_1007_s40745_023_00475_3
crossref_citationtrail_10_1007_s40745_023_00475_3
springer_journals_10_1007_s40745_023_00475_3
PublicationCentury 2000
PublicationDate 20240400
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Annals of data science
PublicationTitleAbbrev Ann. Data. Sci
PublicationTitleAlternate Ann Data Sci
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References C Lin (475_CR57) 2016; 71
475_CR68
475_CR23
N Almadhoun (475_CR48) 2020; 36
475_CR22
475_CR20
475_CR64
F Yu (475_CR44) 2014; 50
A Blanco-Justicia (475_CR37) 2022; 55
Y Gao (475_CR67) 2022
Z Tu (475_CR53) 2020; 40
S Han (475_CR56) 2015; 11
475_CR18
475_CR17
Z Sun (475_CR4) 2019; 7
Z Tian (475_CR5) 2019; 491
475_CR58
E Bozkir (475_CR59) 2021; 16
Z He (475_CR47) 2018; 23
ZA Shen (475_CR69) 2021; 22
T Wang (475_CR27) 2020; 20
475_CR52
475_CR50
Z Tian (475_CR6) 2019; 16
B Fang (475_CR7) 2016; 2
A Ziller (475_CR63) 2021; 11
Y Shi (475_CR14) 2011
JW Kim (475_CR54) 2018; 13
JM Tien (475_CR3) 2017; 4
P Radanliev (475_CR10) 2022; 9
A Machanavajjhala (475_CR16) 2007; 1
J Yu (475_CR32) 2016; 12
V Gada (475_CR11) 2022; 9
Q Ye (475_CR24) 2018; 29
S Zhang (475_CR62) 2022; 12
C Dwork (475_CR21) 2014; 9
475_CR46
475_CR45
YF Ge (475_CR75) 2020; 51
475_CR43
475_CR42
S Chen (475_CR61) 2021; 25
Y Liu (475_CR9) 2020; 22
JL Raisaro (475_CR40) 2014; 103
J Chen (475_CR51) 2020; 2021
Z Li (475_CR55) 2022; 17
M Adnan (475_CR65) 2022; 12
G Wu (475_CR60) 2021; 26
475_CR39
475_CR38
YF Ge (475_CR73) 2022; 31
A Papageorgiou (475_CR25) 2018; 6
475_CR36
M Réau (475_CR70) 2023; 39
475_CR35
475_CR34
475_CR33
S Yan (475_CR12) 2021; 47
475_CR31
475_CR30
475_CR72
L Sweeney (475_CR15) 2002; 10
475_CR71
A Belle (475_CR1) 2015
Y Shi (475_CR2) 2022
N Almadhoun (475_CR49) 2020; 36
Y Gao (475_CR66) 2023
M Naveed (475_CR41) 2015; 48
YF Ge (475_CR74) 2021; 229
J Li (475_CR8) 2020; 1
YF Ge (475_CR19) 2022; 612
DL Olson (475_CR13) 2007
475_CR29
475_CR28
475_CR26
References_xml – volume: 229
  start-page: 107325
  year: 2021
  ident: 475_CR74
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107325
– volume: 6
  start-page: 9390
  year: 2018
  ident: 475_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2799522
– volume: 23
  start-page: 389
  issue: 4
  year: 2018
  ident: 475_CR47
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2018.9010037
– year: 2015
  ident: 475_CR1
  publication-title: BioMed Res Int
  doi: 10.1155/2015/370194
– ident: 475_CR36
  doi: 10.48550/arXiv.1902.08874
– ident: 475_CR35
  doi: 10.48550/arXiv.2007.11524
– volume: 36
  start-page: i136
  year: 2020
  ident: 475_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa475
– volume: 612
  start-page: 864
  year: 2022
  ident: 475_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.09.003
– volume: 1
  start-page: 3-es
  issue: 1
  year: 2007
  ident: 475_CR16
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/1217299.1217302
– ident: 475_CR38
  doi: 10.1609/aaai.v35i10.17123
– ident: 475_CR68
  doi: 10.1145/3442381.3449962
– ident: 475_CR30
  doi: 10.48550/arXiv.1710.01727
– volume: 103
  start-page: 579
  issue: 10
  year: 2014
  ident: 475_CR40
  publication-title: Praxis
  doi: 10.1024/1661-8157/a001657
– ident: 475_CR46
  doi: 10.1145/2810103.2813610
– volume: 71
  start-page: 465
  year: 2016
  ident: 475_CR57
  publication-title: Ann Telecommun
  doi: 10.1007/s12243-016-0498-7
– volume: 4
  start-page: 149
  issue: 2
  year: 2017
  ident: 475_CR3
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-017-0112-5
– volume: 491
  start-page: 151
  year: 2019
  ident: 475_CR5
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.04.011
– ident: 475_CR28
– volume: 13
  start-page: e0207639
  issue: 11
  year: 2018
  ident: 475_CR54
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207639
– volume: 51
  start-page: 4808
  issue: 10
  year: 2020
  ident: 475_CR75
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3027962
– ident: 475_CR72
  doi: 10.1145/3460120.3484565
– ident: 475_CR43
  doi: 10.1145/2487575.2487687
– volume: 48
  start-page: 1
  issue: 1
  year: 2015
  ident: 475_CR41
  publication-title: ACM Comput Surv
  doi: 10.1145/2767007
– volume: 12
  start-page: 1953
  issue: 1
  year: 2022
  ident: 475_CR65
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-05539-7
– ident: 475_CR26
  doi: 10.1109/FOCS.2013.53
– ident: 475_CR42
  doi: 10.1007/978-3-319-59575-7_20
– volume-title: Advances in big data analytics: theory, algorithms and practices
  year: 2022
  ident: 475_CR2
  doi: 10.1007/978-981-16-3607-3
– volume: 17
  start-page: e0272766
  issue: 8
  year: 2022
  ident: 475_CR55
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0272766
– volume: 47
  start-page: 1
  issue: 6
  year: 2021
  ident: 475_CR12
  publication-title: Inf Commun Technol Policy
  doi: 10.12267/j.issn.2096-5931.2021.06.001
– volume: 40
  start-page: 6
  issue: 6
  year: 2020
  ident: 475_CR53
  publication-title: J Comput Appl
  doi: 10.11772/j.issn.1001-9081.2019111929
– volume: 39
  start-page: btac759
  issue: 1
  year: 2023
  ident: 475_CR70
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac759
– volume-title: Optimization based data mining: theory and applications
  year: 2011
  ident: 475_CR14
  doi: 10.1007/978-0-85729-504-0
– ident: 475_CR31
  doi: 10.1609/aaai.v30i1.10169
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 475_CR63
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93030-0
– volume: 9
  start-page: 1049
  issue: 5
  year: 2022
  ident: 475_CR10
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-022-00406-8
– ident: 475_CR34
  doi: 10.1109/SP.2019.00019
– volume: 55
  start-page: 1
  issue: 8
  year: 2022
  ident: 475_CR37
  publication-title: ACM Comput Surv
  doi: 10.1145/3547139
– volume: 25
  start-page: 7325
  year: 2021
  ident: 475_CR61
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05692-7
– volume: 31
  start-page: 957
  issue: 5
  year: 2022
  ident: 475_CR73
  publication-title: VLDB J
  doi: 10.1007/s00778-021-00718-w
– ident: 475_CR33
  doi: 10.1145/2810103.2813687
– ident: 475_CR29
  doi: 10.1145/2660267.2660348
– year: 2023
  ident: 475_CR66
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2023.3239842
– ident: 475_CR23
  doi: 10.1145/3438872.3439097
– volume: 11
  start-page: 1940
  issue: 9
  year: 2015
  ident: 475_CR56
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2472369
– volume: 12
  start-page: 15725
  issue: 1
  year: 2022
  ident: 475_CR62
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-19544-3
– volume: 16
  start-page: e0255979
  issue: 8
  year: 2021
  ident: 475_CR59
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0255979
– volume: 20
  start-page: 7030
  issue: 24
  year: 2020
  ident: 475_CR27
  publication-title: Sensors
  doi: 10.3390/s20247030
– ident: 475_CR64
  doi: 10.1109/GLOBECOM38437.2019.9014259
– ident: 475_CR22
  doi: 10.1145/2976749.2978318
– ident: 475_CR17
  doi: 10.1109/ICDE.2007.367856
– ident: 475_CR50
  doi: 10.1145/3508398.3511519
– volume: 1
  start-page: 100023
  issue: 2
  year: 2020
  ident: 475_CR8
  publication-title: The Innovation
  doi: 10.1016/j.xinn.2020.100023
– ident: 475_CR58
  doi: 10.1109/GLOCOM.2016.7842173
– ident: 475_CR20
  doi: 10.1007/11787006_1
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  ident: 475_CR7
  publication-title: Big Data Res
  doi: 10.11959/j.issn.2096-0271.2016001
– volume: 22
  start-page: 100354
  year: 2020
  ident: 475_CR9
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2020.100354
– ident: 475_CR39
  doi: 10.1145/2976749.2976751
– volume-title: Introduction to business data mining
  year: 2007
  ident: 475_CR13
– volume: 29
  start-page: 1981
  issue: 7
  year: 2018
  ident: 475_CR24
  publication-title: J Softw
  doi: 10.13328/j.cnki.jos.005364
– ident: 475_CR45
  doi: 10.1145/2665943.2665945
– volume: 9
  start-page: 211
  issue: 3–4
  year: 2014
  ident: 475_CR21
  publication-title: Found Trends Theor Comput Sci
  doi: 10.1561/0400000042
– volume: 22
  start-page: bbab051
  issue: 5
  year: 2021
  ident: 475_CR69
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab051
– volume: 10
  start-page: 557
  issue: 05
  year: 2002
  ident: 475_CR15
  publication-title: Int J Uncertain Fuzziness Knowl Based Syst
  doi: 10.1142/S0218488502001648
– ident: 475_CR71
  doi: 10.48550/arXiv.2210.00538
– volume: 9
  start-page: 945
  issue: 5
  year: 2022
  ident: 475_CR11
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-022-00378-9
– volume: 26
  start-page: 1917
  issue: 5
  year: 2021
  ident: 475_CR60
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3123643
– volume: 16
  start-page: 1963
  issue: 3
  year: 2019
  ident: 475_CR6
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2938778
– volume: 12
  start-page: 1005
  issue: 5
  year: 2016
  ident: 475_CR32
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2636090
– volume: 7
  start-page: 152103
  year: 2019
  ident: 475_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947295
– volume: 2021
  start-page: 26
  year: 2020
  ident: 475_CR51
  publication-title: Biocomputing
  doi: 10.1142/9789811232701_0003
– ident: 475_CR18
  doi: 10.1007/978-3-031-20891-1_24
– ident: 475_CR52
  doi: 10.1109/PDCAT46702.2019.00036
– volume: 36
  start-page: 1696
  issue: 6
  year: 2020
  ident: 475_CR49
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz837
– volume: 50
  start-page: 133
  year: 2014
  ident: 475_CR44
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2014.01.008
– year: 2022
  ident: 475_CR67
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2022.3178153
SSID ssj0002140235
Score 2.4093485
SecondaryResourceType review_article
Snippet Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 733
SubjectTerms Artificial Intelligence
Business and Management
Correlation analysis
Data analysis
Data integrity
Economics
Finance
Information technology
Insurance
Machine learning
Management
Mining
Privacy
Statistics for Business
Sustainable development
Wearable technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS-0wEB68-uLLdbtq3Yhw3zTYZqmNL-KKCFfEBXwr2YqC9OhZBP-9k560cq7oc1KazGS2TGY-gL8G2ayM1lRUVlJRKEtN4dGRk8hjL72r9kM18r-r_OJeXD7Ih3jhNojPKlud2Chq17PhjnwvYCxxPGBKHb680oAaFbKrEULjF8ygCi4w-Jo5Pru6vuluWRjGD6xB2UTJDCVGqYiVM039HEYzIhQocxq6JkrKJ63TF5fz68vJ_9KnjVU6n4ff0Z0kR2P-L8CUrxdhroVqIFFyl-DgiNyO-m_-nfRqchpBUVC4n8l1_-lN23eCziuJWRtyqoeatO1K_sD9-dndyQWNsAnUcpVymis0fJajH5hbhyKq0eRrLfJCuCqXOheV0NxmwjjmC5Q_Y7JKVaj5FHOp0Yovw3Tdq_0qEOaUy3Pm0co5IT0GHz7FydxkvJBVliaQteQqbewpHqAtnsuuG3JD4hJJXDYkLnkCO903L-OOGj_O3mi5UEbpGpSfZyGB7W4Y5SIkO3Tte6NBiaZZFaHpKS5yZcy07nccwzjJxH4CxQQ7uwmh5_bkSP302PTeRn9MYgTMEthtOf-5ru-3sfbzNtZhlqGzNH4RtAHTw_7Ib6KzMzRb8UR_APZs-Ls
  priority: 102
  providerName: ProQuest
Title A Survey on Differential Privacy for Medical Data Analysis
URI https://link.springer.com/article/10.1007/s40745-023-00475-3
https://www.ncbi.nlm.nih.gov/pubmed/38625247
https://www.proquest.com/docview/2973342599
https://www.proquest.com/docview/3039809130
https://pubmed.ncbi.nlm.nih.gov/PMC10257172
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcmgvvPoglCJX6q0NSvwIMbctsKBWRajtSvQU2Y6jIlAW7QMJfj3jxA5aKEiccrDz8GNmvolnvgH4rHGZpVYq5pURMc-liXVuEcgJXGMrbFntumzknyfZ8ZB_PxNnPilsEqLdw5Fko6m7ZDd0PbjLJmaxozgUMVuEJcQfCe_BUv_o74_7fysUvQba1NZEeXSJRQn3-TL_f9C8TXoENB_HSz44NG1s0WAFhmEUbQjKxc5sqnfM7QOCx5cOcxWWPTgl_XY3rcGCrddhJRR-IF4PrMOrkM48eQN7ffJ7Nr62N2RUkwNfbgXVxiU5HZ9fK3NDEBYTfx5EDtRUkUCE8haGg8M_-8exL8gQGyYTFmcSTaphiDAzU6LwKwQTSvEs52WVCZXxiitmUq5LanOUbK3TSlaoUyUtE60kewe9elTbDSC0lGWWUYv2s-TColtjE-zMdMpyUaVJBGlYksJ4tnJXNOOy6HiWm4kqcKKKZqIKFsGX7p6rlqvj2d5bYaULL7eTwlXyYqjGpIzgU9eMEueOUVRtR7NJgUZf5o5OFT_yfbsxutcxdBAF5bsR5HNbpuvg2LznW-rzfw2rNyI9gb41jeBr2Bj33_X0MDZf1v0DvKYIy9rYoy3oTccz-xFh1VRvw2I-ONr2soTXb4cnp7_uAAQrF2s
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxRBEK4QfMAXDzwYRWgTfdKOO30M0ybGEJZ1kSMmQsJb09cEEjKLe2D2T_kbrZ6LrETeeO6ezExVddVX3V1fAbyzqGZljaGicJKKXDlq84BATqKOgwy-2IrVyIdH2fBEfD-Vp0vwp62FidcqW59YOWo_cnGP_FPsscTRwJT6evWLxq5R8XS1baFRm8V-mP_GlG3yZa-P-n3P2GD3eGdIm64C1GF-z2mmMC44jjApcx4t2GBENEZkufBFJk0mCmG4S4X1LORontamhSrQMSjme9ZE8iV0-Q8E5yquqHzwrdvTYZitsKqnJ_qBWNDUE02dTlWth7mTiOXQnEaORkn5Yiy8BXBv39P857C2ioGDJ_CoAa9ku7a2p7AUylV43DaGII2feAaft8nP2fg6zMmoJP2mBQu6kkvyY3xxbdycIFQmzRkR6ZupIS05ynM4uRdxvoDlclSGNSDMK59lLGBM9UIGTHVCDydzm_JcFmkvgbQVl3YNg3lspHGpO-7lSsQaRawrEWuewIfumauav-PO2eutFnSzlif6xvISeNsN4yqMRyumDKPZRCMQUHmkWMWPfFkrrXsdx6RRMrGVQL6gzm5CZPheHCkvziumb0R_EvNtlsDHVvM33_X_33h1929swsrw-PBAH-wd7b-GhwxhWn0XaR2Wp-NZeIMwa2o3KtsmcHbfi-kvSmozyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gkSgvgihaQV0T37TQ7kfp-nbxPFGUkCgJPm32q5FAeuSuR4J_PbP9wgM1MT7vtt2PmdnfdGd-A_DK4DZLo3XMCytinksbm9wjkBO4x154V-yGbOQvB9neEf90LI5_yeKvo927K8kmpyGwNJXVzrkrdvrEN3RDeMgsZnGgOxQxuwPLPHDbDWB5-OH7_vV_FooeBK3rbKJuhiSjhLe5M79_0eL5dAt03o6dvHGBWp9L41XQ3YyacJTT7Xlltu3PG2SP_zPlNbjfglYybKTsASz5ch1Wu4IQpLUP63CvS3OePYS3Q_J1Pr3wl2RSklFbhgXNyRk5nJ5caHtJEC6T9p6IjHSlSUeQ8giOxu-_vduL20INsWUyYXEm8ai1DJFnZh0aBY0gQ2ue5dwVmdAZL7hmNuXGUZ-jxhuTFrJAWyupS4yWbAMG5aT0T4BQJ12WUY_nquPCo7vjE-zMTMpyUaRJBGm3Pcq2LOahmMaZ6vmX64VSuFCqXijFInjdP3PecHj8tfdWt-uq1eeZChW-GJo3KSN42TejJobrFV36yXymEAzIPNCs4iAfN0LSf46h4ygo340gXxCfvkNg-V5sKU9-1GzfiAAF-tw0gjedkFyP68_TePpv3V_A3cPRWH3-eLC_CSsUkVsTnrQFg2o6988QeVXmeatcV1yOIL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Differential+Privacy+for+Medical+Data+Analysis&rft.jtitle=Annals+of+data+science&rft.au=Liu%2C+WeiKang&rft.au=Zhang%2C+Yanchun&rft.au=Yang%2C+Hong&rft.au=Meng%2C+Qinxue&rft.date=2024-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2198-5804&rft.eissn=2198-5812&rft.volume=11&rft.issue=2&rft.spage=733&rft.epage=747&rft_id=info:doi/10.1007%2Fs40745-023-00475-3&rft.externalDocID=10_1007_s40745_023_00475_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-5804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-5804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-5804&client=summon