A Survey on Differential Privacy for Medical Data Analysis
Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage...
Saved in:
Published in | Annals of data science Vol. 11; no. 2; pp. 733 - 747 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2198-5804 2198-5812 2198-5812 |
DOI | 10.1007/s40745-023-00475-3 |
Cover
Loading…
Abstract | Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications. |
---|---|
AbstractList | Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications. Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications.Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications. |
Author | Liu, WeiKang Meng, Qinxue Yang, Hong Zhang, Yanchun |
Author_xml | – sequence: 1 givenname: WeiKang surname: Liu fullname: Liu, WeiKang email: dpstudier@e.gzhu.edu.cn organization: Cyberspace Institute of Advanced Technology, Guangzhou University – sequence: 2 givenname: Yanchun surname: Zhang fullname: Zhang, Yanchun organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Institute of Sustainable Industries and Liveable Cities, Victoria University – sequence: 3 givenname: Hong surname: Yang fullname: Yang, Hong organization: Cyberspace Institute of Advanced Technology, Guangzhou University – sequence: 4 givenname: Qinxue surname: Meng fullname: Meng, Qinxue organization: College of Information Engineering, Suzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38625247$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1P3DAQtSoqPrb8gR6qSL30Ejr-SmIu1YrPSiAqtT1bE8emRtkY7GSl_ff1snQpHDjNaPzemzd-B2RnCIMl5COFIwpQf00CaiFLYLwEELUs-Tuyz6hqStlQtrPtQeyRw5TuAIBRkeFyl-zxpmKSiXqfHM-Ln1Nc2lURhuLUO2ejHUaPffEj-iWaVeFCLK5t502eneKIxXzAfpV8-kDeO-yTPXyqM_L7_OzXyWV5dXPx_WR-VRqugJeVMtYaDgwq0wkAVEARRdWIzlUSK-EEckNF2zHbqIq3LXXKUckV66BFxWfk20b3fmoXtjPZX8Re30e_wLjSAb1--TL4P_o2LDUFJmtas6zw5UkhhofJplEvfDK273GwYUqaA1cNKJrrjHx-Bb0LU8wXJ81UzblgUq0tffrf0tbLv3_NALYBmBhSitZtIRT0Oj-9yU_nQPRjfppnUvOKZPyIow_rs3z_NpVvqCnvGW5tfLb9BusvQbWsyQ |
CitedBy_id | crossref_primary_10_1007_s11864_024_01285_2 crossref_primary_10_1016_j_mcpdig_2024_09_005 crossref_primary_10_3390_electronics14020326 crossref_primary_10_59717_j_xinn_life_2024_100079 crossref_primary_10_1098_rsos_230806 crossref_primary_10_1115_1_4067210 crossref_primary_10_1038_s41598_024_83972_6 crossref_primary_10_1109_ACCESS_2024_3467049 |
Cites_doi | 10.1016/j.knosys.2021.107325 10.1109/ACCESS.2018.2799522 10.26599/TST.2018.9010037 10.1155/2015/370194 10.48550/arXiv.1902.08874 10.48550/arXiv.2007.11524 10.1093/bioinformatics/btaa475 10.1016/j.ins.2022.09.003 10.1145/1217299.1217302 10.1609/aaai.v35i10.17123 10.1145/3442381.3449962 10.48550/arXiv.1710.01727 10.1024/1661-8157/a001657 10.1145/2810103.2813610 10.1007/s12243-016-0498-7 10.1007/s40745-017-0112-5 10.1016/j.ins.2019.04.011 10.1371/journal.pone.0207639 10.1109/TCYB.2020.3027962 10.1145/3460120.3484565 10.1145/2487575.2487687 10.1145/2767007 10.1038/s41598-022-05539-7 10.1109/FOCS.2013.53 10.1007/978-3-319-59575-7_20 10.1007/978-981-16-3607-3 10.1371/journal.pone.0272766 10.12267/j.issn.2096-5931.2021.06.001 10.11772/j.issn.1001-9081.2019111929 10.1093/bioinformatics/btac759 10.1007/978-0-85729-504-0 10.1609/aaai.v30i1.10169 10.1038/s41598-021-93030-0 10.1007/s40745-022-00406-8 10.1109/SP.2019.00019 10.1145/3547139 10.1007/s00500-021-05692-7 10.1007/s00778-021-00718-w 10.1145/2810103.2813687 10.1145/2660267.2660348 10.1109/TKDE.2023.3239842 10.1145/3438872.3439097 10.1109/TIFS.2015.2472369 10.1038/s41598-022-19544-3 10.1371/journal.pone.0255979 10.3390/s20247030 10.1109/GLOBECOM38437.2019.9014259 10.1145/2976749.2978318 10.1109/ICDE.2007.367856 10.1145/3508398.3511519 10.1016/j.xinn.2020.100023 10.1109/GLOCOM.2016.7842173 10.1007/11787006_1 10.11959/j.issn.2096-0271.2016001 10.1016/j.eclinm.2020.100354 10.1145/2976749.2976751 10.13328/j.cnki.jos.005364 10.1145/2665943.2665945 10.1561/0400000042 10.1093/bib/bbab051 10.1142/S0218488502001648 10.48550/arXiv.2210.00538 10.1007/s40745-022-00378-9 10.1109/JBHI.2021.3123643 10.1109/TII.2019.2938778 10.1109/TIFS.2016.2636090 10.1109/ACCESS.2019.2947295 10.1142/9789811232701_0003 10.1007/978-3-031-20891-1_24 10.1109/PDCAT46702.2019.00036 10.1093/bioinformatics/btz837 10.1016/j.jbi.2014.01.008 10.1109/TKDE.2022.3178153 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2024 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2024 |
DBID | AAYXX CITATION NPM 3V. 7WY 7WZ 7XB 87Z 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G HCIFZ K60 K6~ L.- M0C P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U 7X8 5PM |
DOI | 10.1007/s40745-023-00475-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Computer Science |
EISSN | 2198-5812 |
EndPage | 747 |
ExternalDocumentID | PMC10257172 38625247 10_1007_s40745_023_00475_3 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 203 4.4 406 7WY 8FL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABUWG ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADKFA ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFDZB AFKRA AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ASPBG AUKKA AVWKF AVXWI AXYYD AYFIA AYQZM AZFZN BAPOH BENPR BEZIV BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FRNLG FRRFC FSGXE GGCAI GGRSB GJIRD HCIFZ HVGLF IKXTQ IWAJR IXD J-C JZLTJ KOV LLZTM M0C M4Y NB0 NPVJJ NQJWS NU0 O9J PHGZT PQBIZ PQBZA PQQKQ PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM ABRTQ NPM PQGLB 3V. 7XB 8FE 8FG 8FK K60 K6~ L.- P62 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c3903-69ceec30206cd400a901aa4684df65a64f4a3c14bd2e8963bb1f9f15392d0ba93 |
IEDL.DBID | AGYKE |
ISSN | 2198-5804 2198-5812 |
IngestDate | Thu Aug 21 18:37:40 EDT 2025 Fri Jul 11 10:50:21 EDT 2025 Fri Jul 25 20:56:05 EDT 2025 Mon Jul 21 06:02:58 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Sun Jul 06 05:09:51 EDT 2025 Thu Apr 10 07:53:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Medical data Differential privacy Data publishing Privacy computing |
Language | English |
License | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3903-69ceec30206cd400a901aa4684df65a64f4a3c14bd2e8963bb1f9f15392d0ba93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10257172 |
PMID | 38625247 |
PQID | 2973342599 |
PQPubID | 2044270 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10257172 proquest_miscellaneous_3039809130 proquest_journals_2973342599 pubmed_primary_38625247 crossref_primary_10_1007_s40745_023_00475_3 crossref_citationtrail_10_1007_s40745_023_00475_3 springer_journals_10_1007_s40745_023_00475_3 |
PublicationCentury | 2000 |
PublicationDate | 20240400 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Annals of data science |
PublicationTitleAbbrev | Ann. Data. Sci |
PublicationTitleAlternate | Ann Data Sci |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | C Lin (475_CR57) 2016; 71 475_CR68 475_CR23 N Almadhoun (475_CR48) 2020; 36 475_CR22 475_CR20 475_CR64 F Yu (475_CR44) 2014; 50 A Blanco-Justicia (475_CR37) 2022; 55 Y Gao (475_CR67) 2022 Z Tu (475_CR53) 2020; 40 S Han (475_CR56) 2015; 11 475_CR18 475_CR17 Z Sun (475_CR4) 2019; 7 Z Tian (475_CR5) 2019; 491 475_CR58 E Bozkir (475_CR59) 2021; 16 Z He (475_CR47) 2018; 23 ZA Shen (475_CR69) 2021; 22 T Wang (475_CR27) 2020; 20 475_CR52 475_CR50 Z Tian (475_CR6) 2019; 16 B Fang (475_CR7) 2016; 2 A Ziller (475_CR63) 2021; 11 Y Shi (475_CR14) 2011 JW Kim (475_CR54) 2018; 13 JM Tien (475_CR3) 2017; 4 P Radanliev (475_CR10) 2022; 9 A Machanavajjhala (475_CR16) 2007; 1 J Yu (475_CR32) 2016; 12 V Gada (475_CR11) 2022; 9 Q Ye (475_CR24) 2018; 29 S Zhang (475_CR62) 2022; 12 C Dwork (475_CR21) 2014; 9 475_CR46 475_CR45 YF Ge (475_CR75) 2020; 51 475_CR43 475_CR42 S Chen (475_CR61) 2021; 25 Y Liu (475_CR9) 2020; 22 JL Raisaro (475_CR40) 2014; 103 J Chen (475_CR51) 2020; 2021 Z Li (475_CR55) 2022; 17 M Adnan (475_CR65) 2022; 12 G Wu (475_CR60) 2021; 26 475_CR39 475_CR38 YF Ge (475_CR73) 2022; 31 A Papageorgiou (475_CR25) 2018; 6 475_CR36 M Réau (475_CR70) 2023; 39 475_CR35 475_CR34 475_CR33 S Yan (475_CR12) 2021; 47 475_CR31 475_CR30 475_CR72 L Sweeney (475_CR15) 2002; 10 475_CR71 A Belle (475_CR1) 2015 Y Shi (475_CR2) 2022 N Almadhoun (475_CR49) 2020; 36 Y Gao (475_CR66) 2023 M Naveed (475_CR41) 2015; 48 YF Ge (475_CR74) 2021; 229 J Li (475_CR8) 2020; 1 YF Ge (475_CR19) 2022; 612 DL Olson (475_CR13) 2007 475_CR29 475_CR28 475_CR26 |
References_xml | – volume: 229 start-page: 107325 year: 2021 ident: 475_CR74 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107325 – volume: 6 start-page: 9390 year: 2018 ident: 475_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2799522 – volume: 23 start-page: 389 issue: 4 year: 2018 ident: 475_CR47 publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2018.9010037 – year: 2015 ident: 475_CR1 publication-title: BioMed Res Int doi: 10.1155/2015/370194 – ident: 475_CR36 doi: 10.48550/arXiv.1902.08874 – ident: 475_CR35 doi: 10.48550/arXiv.2007.11524 – volume: 36 start-page: i136 year: 2020 ident: 475_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa475 – volume: 612 start-page: 864 year: 2022 ident: 475_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2022.09.003 – volume: 1 start-page: 3-es issue: 1 year: 2007 ident: 475_CR16 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/1217299.1217302 – ident: 475_CR38 doi: 10.1609/aaai.v35i10.17123 – ident: 475_CR68 doi: 10.1145/3442381.3449962 – ident: 475_CR30 doi: 10.48550/arXiv.1710.01727 – volume: 103 start-page: 579 issue: 10 year: 2014 ident: 475_CR40 publication-title: Praxis doi: 10.1024/1661-8157/a001657 – ident: 475_CR46 doi: 10.1145/2810103.2813610 – volume: 71 start-page: 465 year: 2016 ident: 475_CR57 publication-title: Ann Telecommun doi: 10.1007/s12243-016-0498-7 – volume: 4 start-page: 149 issue: 2 year: 2017 ident: 475_CR3 publication-title: Ann Data Sci doi: 10.1007/s40745-017-0112-5 – volume: 491 start-page: 151 year: 2019 ident: 475_CR5 publication-title: Inf Sci doi: 10.1016/j.ins.2019.04.011 – ident: 475_CR28 – volume: 13 start-page: e0207639 issue: 11 year: 2018 ident: 475_CR54 publication-title: PLoS ONE doi: 10.1371/journal.pone.0207639 – volume: 51 start-page: 4808 issue: 10 year: 2020 ident: 475_CR75 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3027962 – ident: 475_CR72 doi: 10.1145/3460120.3484565 – ident: 475_CR43 doi: 10.1145/2487575.2487687 – volume: 48 start-page: 1 issue: 1 year: 2015 ident: 475_CR41 publication-title: ACM Comput Surv doi: 10.1145/2767007 – volume: 12 start-page: 1953 issue: 1 year: 2022 ident: 475_CR65 publication-title: Sci Rep doi: 10.1038/s41598-022-05539-7 – ident: 475_CR26 doi: 10.1109/FOCS.2013.53 – ident: 475_CR42 doi: 10.1007/978-3-319-59575-7_20 – volume-title: Advances in big data analytics: theory, algorithms and practices year: 2022 ident: 475_CR2 doi: 10.1007/978-981-16-3607-3 – volume: 17 start-page: e0272766 issue: 8 year: 2022 ident: 475_CR55 publication-title: PLoS ONE doi: 10.1371/journal.pone.0272766 – volume: 47 start-page: 1 issue: 6 year: 2021 ident: 475_CR12 publication-title: Inf Commun Technol Policy doi: 10.12267/j.issn.2096-5931.2021.06.001 – volume: 40 start-page: 6 issue: 6 year: 2020 ident: 475_CR53 publication-title: J Comput Appl doi: 10.11772/j.issn.1001-9081.2019111929 – volume: 39 start-page: btac759 issue: 1 year: 2023 ident: 475_CR70 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac759 – volume-title: Optimization based data mining: theory and applications year: 2011 ident: 475_CR14 doi: 10.1007/978-0-85729-504-0 – ident: 475_CR31 doi: 10.1609/aaai.v30i1.10169 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 475_CR63 publication-title: Sci Rep doi: 10.1038/s41598-021-93030-0 – volume: 9 start-page: 1049 issue: 5 year: 2022 ident: 475_CR10 publication-title: Ann Data Sci doi: 10.1007/s40745-022-00406-8 – ident: 475_CR34 doi: 10.1109/SP.2019.00019 – volume: 55 start-page: 1 issue: 8 year: 2022 ident: 475_CR37 publication-title: ACM Comput Surv doi: 10.1145/3547139 – volume: 25 start-page: 7325 year: 2021 ident: 475_CR61 publication-title: Soft Comput doi: 10.1007/s00500-021-05692-7 – volume: 31 start-page: 957 issue: 5 year: 2022 ident: 475_CR73 publication-title: VLDB J doi: 10.1007/s00778-021-00718-w – ident: 475_CR33 doi: 10.1145/2810103.2813687 – ident: 475_CR29 doi: 10.1145/2660267.2660348 – year: 2023 ident: 475_CR66 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2023.3239842 – ident: 475_CR23 doi: 10.1145/3438872.3439097 – volume: 11 start-page: 1940 issue: 9 year: 2015 ident: 475_CR56 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2472369 – volume: 12 start-page: 15725 issue: 1 year: 2022 ident: 475_CR62 publication-title: Sci Rep doi: 10.1038/s41598-022-19544-3 – volume: 16 start-page: e0255979 issue: 8 year: 2021 ident: 475_CR59 publication-title: PLoS ONE doi: 10.1371/journal.pone.0255979 – volume: 20 start-page: 7030 issue: 24 year: 2020 ident: 475_CR27 publication-title: Sensors doi: 10.3390/s20247030 – ident: 475_CR64 doi: 10.1109/GLOBECOM38437.2019.9014259 – ident: 475_CR22 doi: 10.1145/2976749.2978318 – ident: 475_CR17 doi: 10.1109/ICDE.2007.367856 – ident: 475_CR50 doi: 10.1145/3508398.3511519 – volume: 1 start-page: 100023 issue: 2 year: 2020 ident: 475_CR8 publication-title: The Innovation doi: 10.1016/j.xinn.2020.100023 – ident: 475_CR58 doi: 10.1109/GLOCOM.2016.7842173 – ident: 475_CR20 doi: 10.1007/11787006_1 – volume: 2 start-page: 1 issue: 1 year: 2016 ident: 475_CR7 publication-title: Big Data Res doi: 10.11959/j.issn.2096-0271.2016001 – volume: 22 start-page: 100354 year: 2020 ident: 475_CR9 publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2020.100354 – ident: 475_CR39 doi: 10.1145/2976749.2976751 – volume-title: Introduction to business data mining year: 2007 ident: 475_CR13 – volume: 29 start-page: 1981 issue: 7 year: 2018 ident: 475_CR24 publication-title: J Softw doi: 10.13328/j.cnki.jos.005364 – ident: 475_CR45 doi: 10.1145/2665943.2665945 – volume: 9 start-page: 211 issue: 3–4 year: 2014 ident: 475_CR21 publication-title: Found Trends Theor Comput Sci doi: 10.1561/0400000042 – volume: 22 start-page: bbab051 issue: 5 year: 2021 ident: 475_CR69 publication-title: Brief Bioinform doi: 10.1093/bib/bbab051 – volume: 10 start-page: 557 issue: 05 year: 2002 ident: 475_CR15 publication-title: Int J Uncertain Fuzziness Knowl Based Syst doi: 10.1142/S0218488502001648 – ident: 475_CR71 doi: 10.48550/arXiv.2210.00538 – volume: 9 start-page: 945 issue: 5 year: 2022 ident: 475_CR11 publication-title: Ann Data Sci doi: 10.1007/s40745-022-00378-9 – volume: 26 start-page: 1917 issue: 5 year: 2021 ident: 475_CR60 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3123643 – volume: 16 start-page: 1963 issue: 3 year: 2019 ident: 475_CR6 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2938778 – volume: 12 start-page: 1005 issue: 5 year: 2016 ident: 475_CR32 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2016.2636090 – volume: 7 start-page: 152103 year: 2019 ident: 475_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947295 – volume: 2021 start-page: 26 year: 2020 ident: 475_CR51 publication-title: Biocomputing doi: 10.1142/9789811232701_0003 – ident: 475_CR18 doi: 10.1007/978-3-031-20891-1_24 – ident: 475_CR52 doi: 10.1109/PDCAT46702.2019.00036 – volume: 36 start-page: 1696 issue: 6 year: 2020 ident: 475_CR49 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz837 – volume: 50 start-page: 133 year: 2014 ident: 475_CR44 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2014.01.008 – year: 2022 ident: 475_CR67 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2022.3178153 |
SSID | ssj0002140235 |
Score | 2.4093485 |
SecondaryResourceType | review_article |
Snippet | Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 733 |
SubjectTerms | Artificial Intelligence Business and Management Correlation analysis Data analysis Data integrity Economics Finance Information technology Insurance Machine learning Management Mining Privacy Statistics for Business Sustainable development Wearable technology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS-0wEB68-uLLdbtq3Yhw3zTYZqmNL-KKCFfEBXwr2YqC9OhZBP-9k560cq7oc1KazGS2TGY-gL8G2ayM1lRUVlJRKEtN4dGRk8hjL72r9kM18r-r_OJeXD7Ih3jhNojPKlud2Chq17PhjnwvYCxxPGBKHb680oAaFbKrEULjF8ygCi4w-Jo5Pru6vuluWRjGD6xB2UTJDCVGqYiVM039HEYzIhQocxq6JkrKJ63TF5fz68vJ_9KnjVU6n4ff0Z0kR2P-L8CUrxdhroVqIFFyl-DgiNyO-m_-nfRqchpBUVC4n8l1_-lN23eCziuJWRtyqoeatO1K_sD9-dndyQWNsAnUcpVymis0fJajH5hbhyKq0eRrLfJCuCqXOheV0NxmwjjmC5Q_Y7JKVaj5FHOp0Yovw3Tdq_0qEOaUy3Pm0co5IT0GHz7FydxkvJBVliaQteQqbewpHqAtnsuuG3JD4hJJXDYkLnkCO903L-OOGj_O3mi5UEbpGpSfZyGB7W4Y5SIkO3Tte6NBiaZZFaHpKS5yZcy07nccwzjJxH4CxQQ7uwmh5_bkSP302PTeRn9MYgTMEthtOf-5ru-3sfbzNtZhlqGzNH4RtAHTw_7Ib6KzMzRb8UR_APZs-Ls priority: 102 providerName: ProQuest |
Title | A Survey on Differential Privacy for Medical Data Analysis |
URI | https://link.springer.com/article/10.1007/s40745-023-00475-3 https://www.ncbi.nlm.nih.gov/pubmed/38625247 https://www.proquest.com/docview/2973342599 https://www.proquest.com/docview/3039809130 https://pubmed.ncbi.nlm.nih.gov/PMC10257172 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcmgvvPoglCJX6q0NSvwIMbctsKBWRajtSvQU2Y6jIlAW7QMJfj3jxA5aKEiccrDz8GNmvolnvgH4rHGZpVYq5pURMc-liXVuEcgJXGMrbFntumzknyfZ8ZB_PxNnPilsEqLdw5Fko6m7ZDd0PbjLJmaxozgUMVuEJcQfCe_BUv_o74_7fysUvQba1NZEeXSJRQn3-TL_f9C8TXoENB_HSz44NG1s0WAFhmEUbQjKxc5sqnfM7QOCx5cOcxWWPTgl_XY3rcGCrddhJRR-IF4PrMOrkM48eQN7ffJ7Nr62N2RUkwNfbgXVxiU5HZ9fK3NDEBYTfx5EDtRUkUCE8haGg8M_-8exL8gQGyYTFmcSTaphiDAzU6LwKwQTSvEs52WVCZXxiitmUq5LanOUbK3TSlaoUyUtE60kewe9elTbDSC0lGWWUYv2s-TColtjE-zMdMpyUaVJBGlYksJ4tnJXNOOy6HiWm4kqcKKKZqIKFsGX7p6rlqvj2d5bYaULL7eTwlXyYqjGpIzgU9eMEueOUVRtR7NJgUZf5o5OFT_yfbsxutcxdBAF5bsR5HNbpuvg2LznW-rzfw2rNyI9gb41jeBr2Bj33_X0MDZf1v0DvKYIy9rYoy3oTccz-xFh1VRvw2I-ONr2soTXb4cnp7_uAAQrF2s |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxRBEK4QfMAXDzwYRWgTfdKOO30M0ybGEJZ1kSMmQsJb09cEEjKLe2D2T_kbrZ6LrETeeO6ezExVddVX3V1fAbyzqGZljaGicJKKXDlq84BATqKOgwy-2IrVyIdH2fBEfD-Vp0vwp62FidcqW59YOWo_cnGP_FPsscTRwJT6evWLxq5R8XS1baFRm8V-mP_GlG3yZa-P-n3P2GD3eGdIm64C1GF-z2mmMC44jjApcx4t2GBENEZkufBFJk0mCmG4S4X1LORontamhSrQMSjme9ZE8iV0-Q8E5yquqHzwrdvTYZitsKqnJ_qBWNDUE02dTlWth7mTiOXQnEaORkn5Yiy8BXBv39P857C2ioGDJ_CoAa9ku7a2p7AUylV43DaGII2feAaft8nP2fg6zMmoJP2mBQu6kkvyY3xxbdycIFQmzRkR6ZupIS05ynM4uRdxvoDlclSGNSDMK59lLGBM9UIGTHVCDydzm_JcFmkvgbQVl3YNg3lspHGpO-7lSsQaRawrEWuewIfumauav-PO2eutFnSzlif6xvISeNsN4yqMRyumDKPZRCMQUHmkWMWPfFkrrXsdx6RRMrGVQL6gzm5CZPheHCkvziumb0R_EvNtlsDHVvM33_X_33h1929swsrw-PBAH-wd7b-GhwxhWn0XaR2Wp-NZeIMwa2o3KtsmcHbfi-kvSmozyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gkSgvgihaQV0T37TQ7kfp-nbxPFGUkCgJPm32q5FAeuSuR4J_PbP9wgM1MT7vtt2PmdnfdGd-A_DK4DZLo3XMCytinksbm9wjkBO4x154V-yGbOQvB9neEf90LI5_yeKvo927K8kmpyGwNJXVzrkrdvrEN3RDeMgsZnGgOxQxuwPLPHDbDWB5-OH7_vV_FooeBK3rbKJuhiSjhLe5M79_0eL5dAt03o6dvHGBWp9L41XQ3YyacJTT7Xlltu3PG2SP_zPlNbjfglYybKTsASz5ch1Wu4IQpLUP63CvS3OePYS3Q_J1Pr3wl2RSklFbhgXNyRk5nJ5caHtJEC6T9p6IjHSlSUeQ8giOxu-_vduL20INsWUyYXEm8ai1DJFnZh0aBY0gQ2ue5dwVmdAZL7hmNuXGUZ-jxhuTFrJAWyupS4yWbAMG5aT0T4BQJ12WUY_nquPCo7vjE-zMTMpyUaRJBGm3Pcq2LOahmMaZ6vmX64VSuFCqXijFInjdP3PecHj8tfdWt-uq1eeZChW-GJo3KSN42TejJobrFV36yXymEAzIPNCs4iAfN0LSf46h4ygo340gXxCfvkNg-V5sKU9-1GzfiAAF-tw0gjedkFyP68_TePpv3V_A3cPRWH3-eLC_CSsUkVsTnrQFg2o6988QeVXmeatcV1yOIL4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Differential+Privacy+for+Medical+Data+Analysis&rft.jtitle=Annals+of+data+science&rft.au=Liu%2C+WeiKang&rft.au=Zhang%2C+Yanchun&rft.au=Yang%2C+Hong&rft.au=Meng%2C+Qinxue&rft.date=2024-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2198-5804&rft.eissn=2198-5812&rft.volume=11&rft.issue=2&rft.spage=733&rft.epage=747&rft_id=info:doi/10.1007%2Fs40745-023-00475-3&rft.externalDocID=10_1007_s40745_023_00475_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-5804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-5804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-5804&client=summon |