A Survey on Differential Privacy for Medical Data Analysis
Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage...
Saved in:
Published in | Annals of data science Vol. 11; no. 2; pp. 733 - 747 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Machine learning methods promote the sustainable development of wise information technology of medicine (WITMED), and a variety of medical data brings high value and convenience to medical analysis. However, the applications of medical data have also been confronted with the risk of privacy leakage that is hard to avoid, especially when conducting correlation analysis or data sharing among multiple institutions. Data security and privacy preservation have recently played an essential role in the field of secure and private medical data analysis, where many differential privacy strategies are applied to medical data publishing and mining. In this paper, we survey research work on the applications of differential privacy for medical data analysis, discussing the necessity of medical privacy-preserving, the advantages of differential privacy, and their applications to typical medical data, such as genomic data and wearable device data. Furthermore, we discuss the challenges and potential future research directions for differential privacy in medical applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 2198-5804 2198-5812 2198-5812 |
DOI: | 10.1007/s40745-023-00475-3 |