Quantitative immunogold study of increased expression of metallothionein-I/II in the brain perivascular areas of diabetic scrapie-infected mice

Quantitative immunogold procedure was used to study the distribution of metallothionein I/II (MT-I/II) at the ultrastructural level in the perivascular areas, including microvascular endothelial cells (ECs) and astrocytes with their perivascular end-feet, in brains of scrapie-infected hyperglycemic...

Full description

Saved in:
Bibliographic Details
Published inJournal of Molecular Histology Vol. 37; no. 3-4; pp. 143 - 151
Main Authors Vorbrodt, Andrzej W, Dobrogowska, Danuta H, Meeker, Harry C, Carp, Richard I
Format Journal Article
LanguageEnglish
Published Netherlands Springer Nature B.V 01.05.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quantitative immunogold procedure was used to study the distribution of metallothionein I/II (MT-I/II) at the ultrastructural level in the perivascular areas, including microvascular endothelial cells (ECs) and astrocytes with their perivascular end-feet, in brains of scrapie-infected hyperglycemic (diabetic) and normoglycemic (non-diabetic) mice. Samples of the fronto-parietal cortex obtained from diabetic and non-diabetic scrapie-infected, as well as from non-infected (control) SJL/J mice, were processed for immunocytochemical examination. In control mice, the labelling of the ECs was of low intensity, restricted to few immunogold particles in the cytoplasm. More intense labelling was present in the cytoplasm of astrocytic perivascular processes and perikarya, where it was associated with endoplasmic reticulum and fibrils. A few immunosignals were also present inside the nuclei of astrocytes. In diabetic mice the labelling of the EC cytoplasm was slightly increased, whereas in the cytoplasm of perivascular processes and pericarya of astrocytes, including their nuclei, there was significant enhancement of labelling. In these cells the density of immunosignals was highest in the areas of cytoplasm containing bundles of fibrils. In non-diabetic, scrapie-infected mice the intensity of immunolabelling was higher than in control mice but slightly lower than in diabetic mice. These results are similar to those in Alzheimer's disease reported by other authors, and suggest that neurodegenerative diseases as well as metabolic stress enhance the metallothionein expression in perivascular regions of brain cerebral cortex, predominantly in astrocytes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1567-2379
1567-2387
1573-6865
DOI:10.1007/s10735-006-9053-6