Genetic variability of fragmented stands of pedunculate oak (Quercus robur) in Finland

The genetic structure of 33 natural Quercus robur stands in Finland was studied using 13 allozyme loci to analyze the effects of fragmentation in a wind-pollinated tree species. The present fragmented and discontinuous distribution of oak is a result of both short-term human impact and long-term cli...

Full description

Saved in:
Bibliographic Details
Published inGenetica Vol. 127; no. 1-3; pp. 231 - 241
Main Authors Vakkari, P, Blom, A, Rusanen, M, Raisio, J, Toivonen, H
Format Journal Article
LanguageEnglish
Published Netherlands Springer Nature B.V 01.05.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The genetic structure of 33 natural Quercus robur stands in Finland was studied using 13 allozyme loci to analyze the effects of fragmentation in a wind-pollinated tree species. The present fragmented and discontinuous distribution of oak is a result of both short-term human impact and long-term climatic and geological change, including post-glacial land uplift. In accordance with general expectations, genetic diversity in small populations was lower than that in large populations, and differentiation among small populations was higher than that among large populations. Heterozygote deficiency was more pronounced in large populations, which is proposed to be a Wahlund effect created by either spatial sub-structuring or the existence of synchronized flowering lineages. Also genetic differentiation was higher and diversity lower in Finland than the estimates reported for Central Europe. There were differences in the genetic structure on sites of different geological age. We suggest that on most geologically old sites drift has a prominent effect whereas on younger sites also founder effects may be important.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0016-6707
1573-6857
DOI:10.1007/s10709-005-4014-7