Deformations of geosynthetic reinforced soil under bridge service loads

This paper evaluates the results of 13 large scale Geosynthetic Reinforced Soil (GRS) column load tests, also known as performance tests (PT) or mini-pier tests, to study the effect of tensile strength (Tf), vertical reinforcement spacing (Sv), facing elements, and backfill properties on the deforma...

Full description

Saved in:
Bibliographic Details
Published inGeotextiles and geomembranes Vol. 44; no. 4; pp. 641 - 653
Main Authors Nicks, Jennifer E., Esmaili, Danial, Adams, Michael T.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper evaluates the results of 13 large scale Geosynthetic Reinforced Soil (GRS) column load tests, also known as performance tests (PT) or mini-pier tests, to study the effect of tensile strength (Tf), vertical reinforcement spacing (Sv), facing elements, and backfill properties on the deformations of GRS at 200 kPa, typical bridge bearing pressures, and also at 400 kPa. The results indicate that GRS performs well under service conditions. A semi-empirical expression is proposed for prescribed bearing pressures to limit vertical strain to 0.5% of the abutment height. In addition, recommendations for estimating lateral deformation for GRS bridge abutments are also provided. At 200 kPa surcharge for this series of tests, vertical settlements ranged from 8.3 to 33.9 mm (or from 0.4% to 1.7% axial strain); lateral deformations ranged from 3.0 mm to 10.1 mm (or 0.6%–2.0% lateral strain); and reinforcement strain ranged from less than 1% during construction to less than 3% during loading. The lateral deformation results indicate that the maximum displacement occurs in the top third region of the wall face. Comparing the vertical and lateral displacement data shows that most GRS models experienced negligible positive volume changes up to about 1% under typical bridge service loads.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0266-1144
1879-3584
DOI:10.1016/j.geotexmem.2016.03.005