Synthesis of Metal Oxide Decorated Polycarboxyphenyl Polymer-Grafted Multiwalled Carbon Nanotube Composites by a Chemical Grafting Approach for Supercapacitor Application

We present grafting of polycarboxyphenyl polymer on the surface of multiwalled carbon nanotube (MWCNT) via a free radical polymerization and subsequent anchoring of the metal oxide nanoparticles for the evaluation of their potential applicability to supercapacitor electrodes. Here, metal oxide nanop...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanomaterials Vol. 2015; no. 2015; pp. 1 - 11
Main Authors Choi, Sunwoong, Kim, Young-Seok, Pokharel, Pashupati, Kang, Do-Yeon, Choi, Seong-Ho
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present grafting of polycarboxyphenyl polymer on the surface of multiwalled carbon nanotube (MWCNT) via a free radical polymerization and subsequent anchoring of the metal oxide nanoparticles for the evaluation of their potential applicability to supercapacitor electrodes. Here, metal oxide nanoparticles, Fe3O4 and Sm2O3, were created after the oxidation of metal precursors Sm(NO3)3 and FeCl2, respectively, and attached on the surface of polycarboxyphenyl-grafted MWCNT (P-CNT) in aqueous medium. This approach shows a potential for enhancing the dispersion of Fe3O4 and Sm2O3 nanoparticles on the wall of P-CNT. The structure and morphological characteristics of the purified MWCNT, P-CNT, and metal oxide-anchored polycarboxyphenyl-grafted MWCNT (MP-CNT) nanocomposites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The electrochemical performance of the purified MWCNT electrode, P-CNT electrode, and MP-CNT electrodes was tested by cyclic voltammetry (CV) and galvanostatic charge discharge in a 1.0 M H2SO4 aqueous electrolyte. The results showed that the specific capacitance of the purified MWCNT was 45.3 F/g at the scan rate of 5 mV/s and increased to 54.1 F/g after the modification with polycarboxyphenyl polymer. Further modification of P-CNT with Sm2O3 and Fe3O4 improved the specific capacitance of 65.84 F/g and 173.38 F/g, respectively, at the same scan rate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1687-4110
1687-4129
DOI:10.1155/2015/535319