Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: A single nanozyme mimicking multi-enzymatic cascade systems in peroxisome
[Display omitted] Recently, nanozymes have attracted sustained attention for facilitating next generation of artificial enzymatic cascade systems (ECSs). However, the fabrication of integrated multi-ECSs based on a single nanozyme remains a great challenge. Here, inspired by the biological function...
Saved in:
Published in | Journal of colloid and interface science Vol. 600; pp. 37 - 48 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Recently, nanozymes have attracted sustained attention for facilitating next generation of artificial enzymatic cascade systems (ECSs). However, the fabrication of integrated multi-ECSs based on a single nanozyme remains a great challenge. Here, inspired by the biological function and self-assembling ability of arginine (R), we synthesized arginine-rich peptide-Pt nanoparticle cluster (ARP-PtNC) nanozymes that mimic two typical enzymatic cascade systems of uricase/catalase and superoxide dismutase/catalase in natural peroxisome. ARPs containing at least 10 arginine residues contribute to the cluster formation based on hydrogen bonding and coordination. The well-designed peptide-Pt hybrid nanozyme not only possesses excellent uricase-mimicking activity to degrade uric acid effectively, but also serves as a desired scavenger for reactive oxygen species (ROS) harnessing two efficient enzyme cascade catalysis of uricase/catalase and superoxide dismutase/catalase. The surface microenvironment of the hybrid nanozymes provided by arginine-rich peptides and the cluster structure contribute to the efficient multiply enzyme-like activities. Fascinatingly, the hybrid nanozyme can inhibit the formation of monosodium urate monohydrate effectively based on the architecture of ARP-PtNCs. Thus, ARP-PtNC nanozyme has the potential in gout and hyperuricemia therapy. Rational design of ingenious peptide-metal hybrid nanozyme with unique physicochemical surface properties provides a versatile and designed strategy to fabricate multi-enzymatic cascade systems, which opens new avenues to broaden the application of nanozymes in practice. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2021.05.025 |