Temporal water deficit and wood formation in Cryptomeria japonica
Cell behavior in the cambium and developing xylem of 3-year-old Japanese cedar (Cryptomeria japonica D. Don.) trees, during and after an 11-day suspension of irrigation, was analyzed. Leaf xylem pressure potential and tangential strain of the stem surface were monitored throughout the experiment. An...
Saved in:
Published in | Tree physiology Vol. 23; no. 12; pp. 859 - 863 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Canada
01.08.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cell behavior in the cambium and developing xylem of 3-year-old Japanese cedar (Cryptomeria japonica D. Don.) trees, during and after an 11-day suspension of irrigation, was analyzed. Leaf xylem pressure potential and tangential strain of the stem surface were monitored throughout the experiment. Anatomical features and numbers of developing tracheids and cambial cells were observed in four trees, sampled on Days 0, 4, 8 and 11 after irrigation was suspended. Daytime xylem pressure potential decreased to -1.9 MPa on Day 7 and remained the same until irrigation was resumed on Day 11. The transverse dimensions of the tracheids, which began to form secondary walls, began to decrease on Day 4. The number of cells in the cambial zone and cell expansion zone decreased abruptly on Day 8. Tangentially aligned developing tracheids with collapsed cell walls were observed in samples harvested on Days 8 and 11. Secondary wall formation was recognized in these tracheids. After the resumption of irrigation, xylem pressure potential recovered rapidly to the same value as before the suspension of irrigation. Tangential strain increased within 30 min after the resumption of irrigation, and continued to increase until the onset of light the next day. Eighteen days after the resumption of irrigation, anatomical features of cells in the cambium and cell-expansion zone were similar to those observed before suspension of irrigation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0829-318X 1758-4469 |
DOI: | 10.1093/treephys/23.12.859 |