Biocompatibility of a polymer patch for rotator cuff repair

Both mechanical and biological factors influence the high re-tear rate after rotator cuff repair. Mechanical factors have largely been addressed by the introduction of better implants and modification of suture configuration, but further improvements are needed to address the often poor tissue quali...

Full description

Saved in:
Bibliographic Details
Published inKnee surgery, sports traumatology, arthroscopy : official journal of the ESSKA Vol. 15; no. 5; pp. 632 - 637
Main Authors Cole, Brian J, Gomoll, Andreas H, Yanke, Adam, Pylawka, Tamara, Lewis, Paul, Macgillivray, John D, Williams, James M
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.05.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Both mechanical and biological factors influence the high re-tear rate after rotator cuff repair. Mechanical factors have largely been addressed by the introduction of better implants and modification of suture configuration, but further improvements are needed to address the often poor tissue quality of the degenerated rotator cuff tendons. Current biological solutions provide only short-term reinforcement and have been associated with pseudo-infectious reactions. This pre-clinical animal study investigates the biological response to a novel polycarbonate polyurethane patch used for tissue augmentation in a rat rotator cuff repair model. Bilateral defects were created in the supraspinatus tendons of 12 Sprague Dawley rats. One side was repaired with a patch as a tissue augmentation device. The contralateral side acted as internal control without patch augmentation. After 6 weeks the tissues were harvested and underwent histologic and histomorphometric analyses. Histological evaluation demonstrated no inflammatory reaction; histomorphometry revealed tissue ingrowth of 79.9%. In conclusion, the polycarbonate polyurethane patch for tissue extension or augmentation in rotator cuff repair has demonstrated no inflammatory response and excellent tissue integration in a rat rotator cuff repair model.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0942-2056
1433-7347
DOI:10.1007/s00167-006-0187-6