Synchronization of Hybrid Microgrids with Communication Latency
A distributed cooperative control scheme is proposed in order to implement a distributed secondary control for hybrid lossy microgrids. The designed distributed control is able to synchronize the frequency of inverse-based distributed generators (DGs) and minisynchronous generators (MSGs/SGs) to the...
Saved in:
Published in | Mathematical problems in engineering Vol. 2015; no. 2015; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2015
Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A distributed cooperative control scheme is proposed in order to implement a distributed secondary control for hybrid lossy microgrids. The designed distributed control is able to synchronize the frequency of inverse-based distributed generators (DGs) and minisynchronous generators (MSGs/SGs) to the desired state with a virtual leader DG/SG (reference value) in a distribution switching network under the existence of time-varying communication delays. The secondary control stage selects suitable frequencies of each DG/SG such that they can be synchronized at the desired set point. Using the proposed algorithm, each DG/SG only needs to communicate with its neighboring DGs/SGs intermittently even if the communication networks are local, the topology is time-varying, and the communication delays may exist. Therefore, the failure of a single DG/SG will not produce the failing down of the whole system. Sufficient conditions on the requirements for the network connectivity and the delays boundedness which guarantees the stability and synchronization of the controlled hybrid lossy microgrid power systems are presented. The feasibility of the proposed control methodology is verified by the simulation of a given lossy microgrid test system. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2015/586260 |