Semiglobal Suboptimal Output Regulation for Heterogeneous Multi-Agent Systems With Input Saturation via Adaptive Dynamic Programming

This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 3; pp. 1 - 9
Main Authors Wang, Bingjie, Xu, Lei, Yi, Xinlei, Jia, Yao, Yang, Tao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article considers the semiglobal cooperative suboptimal output regulation problem of heterogeneous multi-agent systems with unknown agent dynamics in the presence of input saturation. To solve the problem, we develop distributed suboptimal control strategies from two perspectives, namely, model-based and data-driven. For the model-based case, we design a suboptimal control strategy by using the low-gain technique and output regulation theory. Moreover, when the agents' dynamics are unknown, we design a data-driven algorithm to solve the problem. We show that proposed control strategies ensure each agent's output gradually follows the reference signal and achieves interference suppression while guaranteeing closed-loop stability. The theoretical results are illustrated by a numerical simulation example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3191673