The Impact of Size and Position of Reference Electrode on the Localization of Biphasic Electrotactile Stimulation on the Fingertips

Development of haptic interfaces to enrich augmented and virtual reality with the sense of touch is the next frontier for technological advancement of these systems. Among available technologies, electrotactile stimulation enables design of high-density interfaces that can provide natural-like sensa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on haptics Vol. 15; no. 2; pp. 255 - 266
Main Authors Isakovic, Milica, Malesevic, Jovana, Kostic, Milos, Dosen, Strahinja, Strbac, Matija
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Development of haptic interfaces to enrich augmented and virtual reality with the sense of touch is the next frontier for technological advancement of these systems. Among available technologies, electrotactile stimulation enables design of high-density interfaces that can provide natural-like sensation of touch in interaction with virtual objects. The present study investigates the human perception of electrotactile sensations on fingertips, focusing on the sensation localization in function of the size and position of reference electrode. Ten healthy subjects participated in the study, with the task to mark the sensations elicited by stimulating the index fingertip using an 8-pad electrode. The test systematically explored several configurations of the active (position) and reference (position and size) electrode pads. The results indicated that there was a spreading of perceived sensations across the fingertip, but that they were mostly localized below the active pad. The position and size of the reference electrode were shown to affect the location of the perceived sensations, which can potentially be exploited as an additional parameter to modulate the feedback. The present study demonstrates that the fingertip is a promising target for the delivery of high-resolution feedback.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1939-1412
2329-4051
2329-4051
DOI:10.1109/TOH.2022.3141187