Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid
At timescales once deemed immeasurably small by Einstein, the random movement of Brownian particles in a liquid is expected to be replaced by ballistic motion. So far, an experimental verification of this prediction has been out of reach due to a lack of instrumentation fast and precise enough to ca...
Saved in:
Published in | Nature physics Vol. 7; no. 7; pp. 576 - 580 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | At timescales once deemed immeasurably small by Einstein, the random movement of Brownian particles in a liquid is expected to be replaced by ballistic motion. So far, an experimental verification of this prediction has been out of reach due to a lack of instrumentation fast and precise enough to capture this motion. Here we report the observation of the Brownian motion of a single particle in an optical trap with 75 MHz bandwidth and sub-ångström spatial precision and the determination of the particle’s velocity autocorrelation function. Our observation is the first measurement of ballistic Brownian motion of a particle in a liquid. The data are in excellent agreement with theoretical predictions taking into account the inertia of the particle and hydrodynamic memory effects.
That Brownian particles in a liquid move diffusively at long times but ballistically at very short times has been understood for more than a century. However, the full details of the transition between these regimes are yet to be explored. Now, the transition from ballistic to diffusive Brownian motion has been measured for the first time. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/nphys1953 |