Compact Configuration for Common Mode Filter Design based on Planar Electromagnetic Bandgap Structures

A planar electromagnetic bandgap configuration of a compact common mode filter that is laid out on printed circuit board is studied. This filter is used to mitigate the common mode noise traveling on high-speed differential signal traces. These differential signal lines may be connected to I/O conne...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electromagnetic compatibility Vol. 54; no. 3; pp. 646 - 654
Main Authors de Paulis, F., Raimondo, L., Connor, S., Archambeault, B., Orlandi, A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A planar electromagnetic bandgap configuration of a compact common mode filter that is laid out on printed circuit board is studied. This filter is used to mitigate the common mode noise traveling on high-speed differential signal traces. These differential signal lines may be connected to I/O connectors and cables and small amounts of common mode noise can result in significant electromagnetic emissions. The filter is obtained by a very simple planar geometry based on the electromagnetic bandgap structures. A cavity made by a rectangular/square patch (together with a solid plane underneath) has a well known and predictable resonant behavior; the coupling between the differential pair routed on top of the patterned plane and the patch cavity, occurring when the traces cross the gap between adjacent patches, is used to reduce the energy associated with the propagation of the common mode noise. The properties of this filter are studied taking into account the layout of a real differential microstrip and the number of gap crossings. A compact configuration is proposed. Time domain simulations validate the suggested layout approach.
ISSN:0018-9375
1558-187X
DOI:10.1109/TEMC.2011.2170427