High-efficiency electrochemical nitrate reduction to ammonia via boron-doped hydroxyl oxide cobalt induced electron delocalization

[Display omitted] Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 676; pp. 560 - 568
Main Authors Guo, Jing, Wang, Qi, Chen, Chunxia, Zhang, Chunfa, Xu, Yinghua, Zhang, Yushuo, Hong, Yan, Kan, Ziwang, Wu, Yingjie, Sun, Tantan, Liu, Song
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.12.2024
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2024.07.160

Cover

Loading…
Abstract [Display omitted] Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat−1 at −0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3.
AbstractList [Display omitted] Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat−1 at −0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3.
Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat⁻¹ at −0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH₃.
Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat-1 at -0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3.Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat-1 at -0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3.
Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat at -0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH .
Author Zhang, Yushuo
Zhang, Chunfa
Wu, Yingjie
Kan, Ziwang
Liu, Song
Chen, Chunxia
Xu, Yinghua
Wang, Qi
Sun, Tantan
Hong, Yan
Guo, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Guo
  fullname: Guo, Jing
  organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
– sequence: 2
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
– sequence: 3
  givenname: Chunxia
  surname: Chen
  fullname: Chen, Chunxia
  email: ccx1759@163.com
  organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
– sequence: 4
  givenname: Chunfa
  surname: Zhang
  fullname: Zhang, Chunfa
  organization: Changchun Jiutai District People’s Hospital, Changchun 130500, China
– sequence: 5
  givenname: Yinghua
  surname: Xu
  fullname: Xu, Yinghua
  organization: Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 311215, China
– sequence: 6
  givenname: Yushuo
  surname: Zhang
  fullname: Zhang, Yushuo
  organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
– sequence: 7
  givenname: Yan
  surname: Hong
  fullname: Hong, Yan
  organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
– sequence: 8
  givenname: Ziwang
  surname: Kan
  fullname: Kan, Ziwang
  organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
– sequence: 9
  givenname: Yingjie
  surname: Wu
  fullname: Wu, Yingjie
  organization: School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
– sequence: 10
  givenname: Tantan
  surname: Sun
  fullname: Sun, Tantan
  email: suntantan@zju.edu.cn
  organization: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
– sequence: 11
  givenname: Song
  orcidid: 0000-0002-1792-6016
  surname: Liu
  fullname: Liu, Song
  email: carlosliusong@nefu.edu.cn
  organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39053404$$D View this record in MEDLINE/PubMed
BookMark eNqFkbFu2zAURYkiReMk_YEOBccuUh9FSSSBLkXQJgECZGlmgiafahoS6ZJyEGfsl5eO3Q4dkoF4A8-5w71n5CTEgIR8YFAzYP3ndb22PtcNNG0NomY9vCELBqqrBAN-QhYADauUUOKUnOW8BmCs69Q7csoVdLyFdkF-X_ufqwqHwVuPwe4ojmjnFO0KJ2_NSIOfk5mRJnRbO_sY6BypmaYYvKEP5S1jiqFycYOOrnYuxcfdSOOjd0htXJpxpj4UtfweowN1OMaS7Z_MPvCCvB3MmPH98Z6T--_fflxeV7d3VzeXX28ry6Waq942Yhigc23DFEcmW4XQ9lKAbAQ3hhslwQ1d13dtz4dh2TCjjGNSKim5k_ycfDrkblL8tcU868lni-NoAsZt1rwpfQnWCf46CrIVgqmeFfTjEd0uJ3R6k_xk0k7_rbgAzQGwKeaccPiHMND7HfVa73fU-x01CF12LJL8T7J-fm6rrOHHl9UvBxVLlw8ek87P06LzqfSvXfQv6X8A3Hu5_g
CitedBy_id crossref_primary_10_1002_smll_202412626
crossref_primary_10_1016_j_cej_2025_161528
crossref_primary_10_1039_D4CC04193C
crossref_primary_10_1021_acsanm_4c05720
crossref_primary_10_1016_j_apcatb_2025_125254
Cites_doi 10.1002/adma.202209855
10.1016/j.nanoen.2024.109594
10.1016/j.apcatb.2022.122353
10.1002/anie.202300054
10.1016/j.apcatb.2022.121404
10.1002/adfm.202110783
10.1002/anie.202313886
10.1002/adfm.202108644
10.1016/j.apcatb.2023.122687
10.1016/j.apcatb.2021.120829
10.1016/j.apcatb.2022.122319
10.1021/jacs.1c03375
10.1016/j.apcatb.2023.122534
10.1002/adma.202104667
10.1038/s41467-022-35664-w
10.1021/acsnano.4c01958
10.1002/adfm.202209890
10.1021/jacs.0c04867
10.1016/j.cej.2023.141960
10.1038/s41565-020-00809-9
10.1016/j.jece.2024.113141
10.1002/adfm.201901051
10.1007/s40820-023-01217-z
10.1038/s41467-023-43897-6
10.1039/D1CS00857A
10.1021/jacs.2c13015
10.1021/acsami.1c15206
10.1002/smll.202105331
10.1007/s40843-022-2263-x
10.1002/smll.202207743
10.1021/jacs.2c02262
10.1002/anie.202117178
10.1038/s41467-023-39366-9
10.1016/j.apcatb.2022.122293
10.1039/D1EE03097C
10.1007/s12274-023-5556-7
10.1016/j.apcatb.2022.121094
10.1021/jacs.3c02428
10.1016/j.apcatb.2023.123234
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024. Published by Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024. Published by Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2024.07.160
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 568
ExternalDocumentID 39053404
10_1016_j_jcis_2024_07_160
S0021979724016722
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
LX6
M24
NDZJH
NEJ
R2-
SCB
SCE
SSH
VH1
WUQ
ZGI
ZXP
EFKBS
NPM
7X8
EFLBG
7S9
L.6
ID FETCH-LOGICAL-c389t-6c27ff05d42193e1849e0468708273aa3a980df5565463ffb21a9ad1889883d83
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Sep 05 17:15:46 EDT 2025
Fri Sep 05 03:02:07 EDT 2025
Mon Jul 21 06:08:51 EDT 2025
Tue Jul 01 04:19:32 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Sat Sep 14 18:00:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Transition metal catalyst
Ammonia synthesis
Nitrate reduction
Doping strategy
Language English
License Copyright © 2024. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-6c27ff05d42193e1849e0468708273aa3a980df5565463ffb21a9ad1889883d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1792-6016
PMID 39053404
PQID 3084771961
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3200271573
proquest_miscellaneous_3084771961
pubmed_primary_39053404
crossref_primary_10_1016_j_jcis_2024_07_160
crossref_citationtrail_10_1016_j_jcis_2024_07_160
elsevier_sciencedirect_doi_10_1016_j_jcis_2024_07_160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dou, Yuan, Yu, Zhang, Zhang, Fan, Al-Mamun, Liu, He, Zhao (b0190) 2022; 34
Han, Hu, Yu, Xu, Jing, Liu, Gao, Zhang (b0100) 2023; 328
Shin, Jung, Kim, Kim, Song, Park, An, Koo (b0125) 2024; 340
Liu, Qiao, Chen, Zhou, Feng, Leong, Ng, Peng, Wang, Ip, Pan (b0045) 2023; 324
Xiong, Yao, Zhu, Xiao, Hu, Huang, Zhang, Balogun (b0145) 2022; 18
Zhang, Wu, Zheng, Jin, Shen, Li, Wang, Wang, Wang, Wei, Zhang, Wang, Zhang, Yu, Dong, Zhu, Zhang, Lu (b0080) 2023; 14
Chen, Ma, Li, Kang, Ma, Chu (b0175) 2023; 33
Yao, Wang, Jia, Yin, Cong, Chen, Luo (b0055) 2022; 61
Sfeir, Teles, Ciotonea, Reddy, Marinova, Dhainaut, Löfberg, Dacquin, Royer, Laassiri (b0030) 2023; 325
Shen, Yu, Zhao, Mushtaq, Ji, Yasin, Rehman, Liu, Cai, Tsiakaras, Zhao, N (b0105) 2023; 331
Dou, Yuan, Yu, Zhang, Zhang, Fan, Al-Mamun, Liu, He, Zhao (b0060) 2021; 34
Zhao, Hai, Li, Jiang, Wang (b0205) 2023; 461
Gao, Zeng, Tang, Wang, Yang, Hu, Liu (b0065) 2021; 32
Guo, Li, Yang, Luo, Liu, Zhang, Tang, Yang, Zhou (b0165) 2023; 19
Hattori, Okuyama, Kurosawa, Hara (b0120) 2023; 145
J. Yuan, H. Yin, X. Jin, D. Zhao, Y. Liu, A. Du, X. Liu, A.P. O’Mullane, A practical FeP nanoarrays electrocatalyst for efficient catalytic reduction of nitrite ions in wastewater to ammonia, Appl. Catal., B 325 (2023) 122353.
Yang, Zhang, Yang, Wang, Li, Gong, Yao, Du, Liu, Yu (b0005) 2022; 312
Zhang, Zha, Ye, Li, Lin, Zheng, Wang, Zhang, Yin, Shi, Zhang (b0010) 2023; 16
Jia, Yao, Yu, Cong, Luo (b0020) 2023; 62
Ye, Chen, Zhang, Chen, Peng, Yang, Zheng, Li, Ren, Cao, Xue, Qiu, Zhang, Liu (b0135) 2022; 15
Chen, Wang, Guo, Ma, Chu (b0185) 2023; 16
Zhang, Zheng, Zhou, Ye, Chu, Zhou, Zhang, Liu (b0050) 2023; 35
Moysiadou, Lee, Hsu, Chen, Hu (b0025) 2020; 142
Xu, Zhang, Zhou, Li, Zhou, Xu, Jia, Zhu, Wu, Gao, Ye (b0090) 2022; 66
Xu, Ma, Chen, Zhang, Yang (b0160) 2022; 51
Ding, Hai, Li, Yang, Yuan, Zhang, Luo (b0200) 2024; 12
Reith, Triana, Pazoki, Amiri, Nyman, Patzke (b0150) 2021; 143
Xu, Ren, Ren, Wang, Wang, Li, Wang, Wang (b0130) 2022; 306
Zhang, Li, Chen, Guo, Ma, Chu (b0170) 2023; 62
Huang, Long, Wang, Meng, Yu, Lu, Xiao, Zhang (b0195) 2021; 13
Zhang, Wan, Chen, Zhang, Chu (b0095) 2024; 125
Zhang, Li, Cui, Wang, Zhang, Li, Hou, Guo, Liang, Huang, Peng, Zhi (b0070) 2023; 14
Xiang, Qiang, Shang, Chen, Kang, Chu (b0155) 2024
Wang, Wang, Liu, Li, Gao (b0115) 2019; 29
Feng, Wu, Liu, Xu, Song, Zhang, Zhu, Kang, Sun, Han (b0140) 2023; 145
Yang, Qi, Li, Liu, Yang, Zhang, Zhao, Jiang, Su, Zhang, Li, Tian, Liu, Wang, Zhang (b0075) 2022; 144
Han, Li, Chen, Coppex, Kim, Noh, Fu, Lu, Singh, Siahrostami, Jiang, Baek (b0035) 2020; 16
Wang, Shang, Sun, Yang, Chu (b0040) 2024; 18
Sun, Gao, Fei, Zhao (b0180) 2022; 301
Fan, Wang, Zhang, Song, Zheng, Li, Tan, Han, Deng, Hu (b0085) 2022; 32
Fan, Xie, Li, Sun, Xu, Tang, Li, Shao (b0110) 2022; 13
10.1016/j.jcis.2024.07.160_b0015
Yao (10.1016/j.jcis.2024.07.160_b0055) 2022; 61
Yang (10.1016/j.jcis.2024.07.160_b0005) 2022; 312
Fan (10.1016/j.jcis.2024.07.160_b0110) 2022; 13
Zhang (10.1016/j.jcis.2024.07.160_b0050) 2023; 35
Xu (10.1016/j.jcis.2024.07.160_b0160) 2022; 51
Fan (10.1016/j.jcis.2024.07.160_b0085) 2022; 32
Wang (10.1016/j.jcis.2024.07.160_b0040) 2024; 18
Huang (10.1016/j.jcis.2024.07.160_b0195) 2021; 13
Zhang (10.1016/j.jcis.2024.07.160_b0010) 2023; 16
Jia (10.1016/j.jcis.2024.07.160_b0020) 2023; 62
Zhang (10.1016/j.jcis.2024.07.160_b0170) 2023; 62
Wang (10.1016/j.jcis.2024.07.160_b0115) 2019; 29
Xu (10.1016/j.jcis.2024.07.160_b0090) 2022; 66
Xiong (10.1016/j.jcis.2024.07.160_b0145) 2022; 18
Chen (10.1016/j.jcis.2024.07.160_b0185) 2023; 16
Zhang (10.1016/j.jcis.2024.07.160_b0080) 2023; 14
Gao (10.1016/j.jcis.2024.07.160_b0065) 2021; 32
Shin (10.1016/j.jcis.2024.07.160_b0125) 2024; 340
Zhang (10.1016/j.jcis.2024.07.160_b0095) 2024; 125
Dou (10.1016/j.jcis.2024.07.160_b0190) 2022; 34
Guo (10.1016/j.jcis.2024.07.160_b0165) 2023; 19
Chen (10.1016/j.jcis.2024.07.160_b0175) 2023; 33
Xiang (10.1016/j.jcis.2024.07.160_b0155) 2024
Hattori (10.1016/j.jcis.2024.07.160_b0120) 2023; 145
Ye (10.1016/j.jcis.2024.07.160_b0135) 2022; 15
Feng (10.1016/j.jcis.2024.07.160_b0140) 2023; 145
Reith (10.1016/j.jcis.2024.07.160_b0150) 2021; 143
Zhang (10.1016/j.jcis.2024.07.160_b0070) 2023; 14
Sun (10.1016/j.jcis.2024.07.160_b0180) 2022; 301
Ding (10.1016/j.jcis.2024.07.160_b0200) 2024; 12
Xu (10.1016/j.jcis.2024.07.160_b0130) 2022; 306
Yang (10.1016/j.jcis.2024.07.160_b0075) 2022; 144
Zhao (10.1016/j.jcis.2024.07.160_b0205) 2023; 461
Han (10.1016/j.jcis.2024.07.160_b0035) 2020; 16
Dou (10.1016/j.jcis.2024.07.160_b0060) 2021; 34
Moysiadou (10.1016/j.jcis.2024.07.160_b0025) 2020; 142
Liu (10.1016/j.jcis.2024.07.160_b0045) 2023; 324
Han (10.1016/j.jcis.2024.07.160_b0100) 2023; 328
Shen (10.1016/j.jcis.2024.07.160_b0105) 2023; 331
Sfeir (10.1016/j.jcis.2024.07.160_b0030) 2023; 325
References_xml – volume: 14
  start-page: 8036
  year: 2023
  ident: b0070
  article-title: Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells
  publication-title: Nat. Commun.
– volume: 145
  start-page: 9857
  year: 2023
  end-page: 9866
  ident: b0140
  article-title: Improving CO
  publication-title: J. Am. Chem. Soc.
– volume: 62
  start-page: e202313886
  year: 2023
  ident: b0020
  article-title: Unveiling the electrolyte cations dependent kinetics on CoOOH-catalyzed oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 145
  start-page: 7888
  year: 2023
  end-page: 7897
  ident: b0120
  article-title: Low-temperature ammonia synthesis on iron catalyst with an electron donor
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 2209890
  year: 2023
  ident: b0175
  article-title: Single-Atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: e2104667
  year: 2021
  ident: b0060
  article-title: Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis
  publication-title: Adv. Mater.
– year: 2024
  ident: b0155
  article-title: Tandem electrocatalytic reduction of nitrite to ammonia on rhodium-copper single atom alloys
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 8737
  year: 2023
  end-page: 8742
  ident: b0185
  article-title: Iridium single-atom catalyst for highly efficient NO electroreduction to NH
  publication-title: Nano Res.
– volume: 35
  start-page: 2209855
  year: 2023
  ident: b0050
  article-title: Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia
  publication-title: Adv. Mater.
– volume: 328
  year: 2023
  ident: b0100
  article-title: Dual confinement of LaCoO
  publication-title: Appl Catal B
– volume: 331
  year: 2023
  ident: b0105
  article-title: O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate
  publication-title: Appl Catal B
– volume: 66
  start-page: 1352
  year: 2022
  end-page: 1361
  ident: b0090
  article-title: Boosting the interlayer-confined nitrate reduction reaction by in situ electrochemical potassium ion intercalation
  publication-title: Sci. China Mater.
– volume: 312
  year: 2022
  ident: b0005
  article-title: Molybdenum-based nitrogen carrier for ammonia production via a chemical looping route
  publication-title: Appl Catal B
– volume: 61
  start-page: e202117178
  year: 2022
  ident: b0055
  article-title: Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation
  publication-title: Angew. Chem. Int. Ed.
– volume: 340
  year: 2024
  ident: b0125
  article-title: Elucidating the effect of Ce with abundant surface oxygen vacancies on MgAl
  publication-title: Appl. Catal. B
– volume: 18
  start-page: e2105331
  year: 2022
  ident: b0145
  article-title: In situ grown Co-based interstitial compounds: non-3d metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis
  publication-title: Small
– reference: J. Yuan, H. Yin, X. Jin, D. Zhao, Y. Liu, A. Du, X. Liu, A.P. O’Mullane, A practical FeP nanoarrays electrocatalyst for efficient catalytic reduction of nitrite ions in wastewater to ammonia, Appl. Catal., B 325 (2023) 122353.
– volume: 32
  start-page: 2108644
  year: 2021
  ident: b0065
  article-title: Understanding the synergistic effects and structural evolution of Co(OH)
  publication-title: Adv. Funct. Mater.
– volume: 324
  year: 2023
  ident: b0045
  article-title: Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co
  publication-title: Appl Catal B
– volume: 18
  start-page: 13141
  year: 2024
  end-page: 13149
  ident: b0040
  article-title: P-block antimony-copper single-atom alloys for selective nitrite electroreduction to ammonia
  publication-title: ACS Nano
– volume: 144
  start-page: 12062
  year: 2022
  end-page: 12071
  ident: b0075
  article-title: Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2710
  year: 2022
  end-page: 2758
  ident: b0160
  article-title: Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 3634
  year: 2023
  ident: b0080
  article-title: Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia
  publication-title: Nat. Commun.
– volume: 142
  start-page: 11901
  year: 2020
  end-page: 11914
  ident: b0025
  article-title: Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step
  publication-title: J. Am. Chem. Soc.
– volume: 325
  year: 2023
  ident: b0030
  article-title: Enhancing ammonia catalytic production over spatially confined cobalt molybdenum nitride nanoparticles in SBA-15
  publication-title: Appl Catal B
– volume: 143
  start-page: 15022
  year: 2021
  end-page: 15038
  ident: b0150
  article-title: Unraveling nanoscale cobalt oxide catalysts for the oxygen evolution reaction: maximum performance, minimum effort
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: e2104667
  year: 2022
  ident: b0190
  article-title: Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis
  publication-title: Adv. Mater.
– volume: 12
  year: 2024
  ident: b0200
  article-title: Modulation of cationic vacancies in Co
  publication-title: J. Environ. Chem. Eng.
– volume: 125
  year: 2024
  ident: b0095
  article-title: p-d hybridized In-Co dual sites promote nitrite electroreduction to ammonia at high current density
  publication-title: Nano Energy
– volume: 19
  start-page: 2207743
  year: 2023
  ident: b0165
  article-title: Self-supported Pd nanorod arrays for high-efficient nitrate electroreduction to ammonia
  publication-title: Small
– volume: 29
  start-page: 1901051
  year: 2019
  ident: b0115
  article-title: Conductive CoOOH as carbon-free sulfur lmmobilizer to fabricate sulfur-based composite for lithium–sulfur battery
  publication-title: Adv. Funct. Mater.
– volume: 301
  year: 2022
  ident: b0180
  article-title: Efficient and selective electrochemical reduction of nitrate to N
  publication-title: Appl Catal B
– volume: 16
  start-page: 9
  year: 2023
  ident: b0010
  article-title: Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia
  publication-title: Nano-Micro Lett.
– volume: 16
  start-page: 325
  year: 2020
  end-page: 330
  ident: b0035
  article-title: Mechanochemistry for ammonia synthesis under mild conditions
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 7958
  year: 2022
  ident: b0110
  article-title: Active hydrogen boosts electrochemical nitrate reduction to ammonia
  publication-title: Nat. Commun.
– volume: 62
  year: 2023
  ident: b0170
  article-title: Tandem electrocatalytic nitrate reduction to ammonia on MBenes
  publication-title: Angew. Chem. Int. Ed.
– volume: 461
  year: 2023
  ident: b0205
  article-title: Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 2110783
  year: 2022
  ident: b0085
  article-title: Phase transfer of Mo
  publication-title: Adv. Funct. Mater.
– volume: 306
  year: 2022
  ident: b0130
  article-title: Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu
  publication-title: Appl. Catal. B
– volume: 13
  start-page: 54967
  year: 2021
  end-page: 54973
  ident: b0195
  article-title: Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 760
  year: 2022
  end-page: 770
  ident: b0135
  article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide
  publication-title: Energ. Environ. Sci.
– volume: 35
  start-page: 2209855
  issue: 10
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0050
  article-title: Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209855
– year: 2024
  ident: 10.1016/j.jcis.2024.07.160_b0155
  article-title: Tandem electrocatalytic reduction of nitrite to ammonia on rhodium-copper single atom alloys
  publication-title: Adv. Funct. Mater.
– volume: 125
  year: 2024
  ident: 10.1016/j.jcis.2024.07.160_b0095
  article-title: p-d hybridized In-Co dual sites promote nitrite electroreduction to ammonia at high current density
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109594
– ident: 10.1016/j.jcis.2024.07.160_b0015
  doi: 10.1016/j.apcatb.2022.122353
– volume: 62
  issue: 13
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0170
  article-title: Tandem electrocatalytic nitrate reduction to ammonia on MBenes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202300054
– volume: 312
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0005
  article-title: Molybdenum-based nitrogen carrier for ammonia production via a chemical looping route
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.121404
– volume: 32
  start-page: 2110783
  issue: 20
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0085
  article-title: Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110783
– volume: 62
  start-page: e202313886
  issue: 49
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0020
  article-title: Unveiling the electrolyte cations dependent kinetics on CoOOH-catalyzed oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202313886
– volume: 32
  start-page: 2108644
  issue: 6
  year: 2021
  ident: 10.1016/j.jcis.2024.07.160_b0065
  article-title: Understanding the synergistic effects and structural evolution of Co(OH)2 and Co3O4 toward boosting electrochemical charge storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108644
– volume: 331
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0105
  article-title: O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2023.122687
– volume: 301
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0180
  article-title: Efficient and selective electrochemical reduction of nitrate to N2 by relay catalytic effects of Fe-Ni bimetallic sites on MOF-derived structure
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2021.120829
– volume: 325
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0030
  article-title: Enhancing ammonia catalytic production over spatially confined cobalt molybdenum nitride nanoparticles in SBA-15
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.122319
– volume: 143
  start-page: 15022
  issue: 37
  year: 2021
  ident: 10.1016/j.jcis.2024.07.160_b0150
  article-title: Unraveling nanoscale cobalt oxide catalysts for the oxygen evolution reaction: maximum performance, minimum effort
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03375
– volume: 328
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0100
  article-title: Dual confinement of LaCoOx modified Co nanoparticles for superior and stable ammonia decomposition
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2023.122534
– volume: 34
  start-page: e2104667
  issue: 2
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0190
  article-title: Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104667
– volume: 13
  start-page: 7958
  issue: 1
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0110
  article-title: Active hydrogen boosts electrochemical nitrate reduction to ammonia
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35664-w
– volume: 18
  start-page: 13141
  issue: 20
  year: 2024
  ident: 10.1016/j.jcis.2024.07.160_b0040
  article-title: P-block antimony-copper single-atom alloys for selective nitrite electroreduction to ammonia
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c01958
– volume: 33
  start-page: 2209890
  issue: 12
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0175
  article-title: Single-Atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209890
– volume: 142
  start-page: 11901
  issue: 27
  year: 2020
  ident: 10.1016/j.jcis.2024.07.160_b0025
  article-title: Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04867
– volume: 461
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0205
  article-title: Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141960
– volume: 16
  start-page: 325
  issue: 3
  year: 2020
  ident: 10.1016/j.jcis.2024.07.160_b0035
  article-title: Mechanochemistry for ammonia synthesis under mild conditions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00809-9
– volume: 12
  issue: 4
  year: 2024
  ident: 10.1016/j.jcis.2024.07.160_b0200
  article-title: Modulation of cationic vacancies in Co3O4 for promoted photocatalytic nitrogen fixation and electrocatalytic nitrate reduction to ammonia
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.113141
– volume: 29
  start-page: 1901051
  issue: 23
  year: 2019
  ident: 10.1016/j.jcis.2024.07.160_b0115
  article-title: Conductive CoOOH as carbon-free sulfur lmmobilizer to fabricate sulfur-based composite for lithium–sulfur battery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901051
– volume: 16
  start-page: 9
  issue: 1
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0010
  article-title: Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01217-z
– volume: 14
  start-page: 8036
  issue: 1
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0070
  article-title: Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43897-6
– volume: 51
  start-page: 2710
  issue: 7
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0160
  article-title: Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00857A
– volume: 145
  start-page: 7888
  issue: 14
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0120
  article-title: Low-temperature ammonia synthesis on iron catalyst with an electron donor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c13015
– volume: 13
  start-page: 54967
  issue: 46
  year: 2021
  ident: 10.1016/j.jcis.2024.07.160_b0195
  article-title: Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15206
– volume: 18
  start-page: e2105331
  issue: 9
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0145
  article-title: In situ grown Co-based interstitial compounds: non-3d metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis
  publication-title: Small
  doi: 10.1002/smll.202105331
– volume: 66
  start-page: 1352
  issue: 4
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0090
  article-title: Boosting the interlayer-confined nitrate reduction reaction by in situ electrochemical potassium ion intercalation
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-022-2263-x
– volume: 19
  start-page: 2207743
  issue: 10
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0165
  article-title: Self-supported Pd nanorod arrays for high-efficient nitrate electroreduction to ammonia
  publication-title: Small
  doi: 10.1002/smll.202207743
– volume: 144
  start-page: 12062
  issue: 27
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0075
  article-title: Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c02262
– volume: 61
  start-page: e202117178
  issue: 28
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0055
  article-title: Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202117178
– volume: 14
  start-page: 3634
  issue: 1
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0080
  article-title: Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39366-9
– volume: 324
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0045
  article-title: Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co3O4 nanotubes
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.122293
– volume: 15
  start-page: 760
  issue: 2
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0135
  article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D1EE03097C
– volume: 16
  start-page: 8737
  issue: 7
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0185
  article-title: Iridium single-atom catalyst for highly efficient NO electroreduction to NH3
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5556-7
– volume: 306
  year: 2022
  ident: 10.1016/j.jcis.2024.07.160_b0130
  article-title: Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2022.121094
– volume: 145
  start-page: 9857
  issue: 17
  year: 2023
  ident: 10.1016/j.jcis.2024.07.160_b0140
  article-title: Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c02428
– volume: 34
  start-page: e2104667
  issue: 2
  year: 2021
  ident: 10.1016/j.jcis.2024.07.160_b0060
  article-title: Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104667
– volume: 340
  year: 2024
  ident: 10.1016/j.jcis.2024.07.160_b0125
  article-title: Elucidating the effect of Ce with abundant surface oxygen vacancies on MgAl2O4-supported Ru-based catalysts for ammonia decomposition
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2023.123234
SSID ssj0011559
Score 2.488027
Snippet [Display omitted] Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route,...
Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 560
SubjectTerms adsorption
ammonia
Ammonia synthesis
boron
cobalt
density functional theory
desorption
Doping strategy
Electrocatalysis
electrochemistry
electrodes
hydrogen
hydrogenation
Nitrate reduction
species
Transition metal catalyst
Title High-efficiency electrochemical nitrate reduction to ammonia via boron-doped hydroxyl oxide cobalt induced electron delocalization
URI https://dx.doi.org/10.1016/j.jcis.2024.07.160
https://www.ncbi.nlm.nih.gov/pubmed/39053404
https://www.proquest.com/docview/3084771961
https://www.proquest.com/docview/3200271573
Volume 676
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV2_b9UwELaqdgAGBOXXK6UyEhtyGzt2bI_VE9UDRCcqdbMc2xGpquSppAgWBv7y3iXOEwx9A0OGRHZk-c53Z_u77wh5J6wQqdIFExZJtXUtmE2GM1FXsqmCijbigf6X82p1IT9dqssdspxzYRBWmW3_ZNNHa52_nOTZPFm3Leb4wmrTVoNP4pUWaIel1Miff_x7A_PgeO02wTw4w9Y5cWbCeF2FFim7hTyezlnuc073BZ-jEzp7Qh7n6JGeTgN8SnZSt08eLOeibfvk0V_8gs_IH0RxsDSyRGCKJc1Fb0JmCaCwnpEqgt4ggSuKiA499aiarac_4KmR4IDFfp0i_fYrIublmvY_25hoQCaRgcKeHrQjzr_uaEyjf8z5nc_JxdmHr8sVy0UXWIDYZWBVELppChUlzG6ZYANoE-yhYVkbiHS8L701RWyUwiyosmlqwb31kRtjjSmjKV-Q3a7v0itCVahgP1abRqRaeittEWsbVKot98kbtSB8nm0XMiM5Fsa4djP07MqhhBxKyBXagYQW5P2mz3ri49jaWs1CdP9olQOHsbXf21niDgSIdyi-S_3td1cW4M41mC2-pQ0CXzRXulyQl5O6bMZaWrB6spAH_zmy1-QhviGghqtDsjvc3KY3EBYN9dGo90dk7_Tj59X5HZUfDQ4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9lA4ICiv5Wkkbsg0duLYPlYrqi1t99RKvVl-RaSqklVJEVz55cxsnBUcugcOuSR2ZHne9sw3hHwURohUq4IJg6DaygtmkuZM-Lpq6iCjiXigf76sF5fV1yt5tUPmUy0MplVm3T_q9LW2zm8O824ertoWa3xB2pRRYJN4rQTo4T1EpwJm3zs6OV0sN5cJePM2ZnpwhhNy7cyY5nUdWkTtFtXn8ajlPvt0n_-5tkPHj8mj7EDSo3GNT8hO6g7I_nzq23ZAHv4FMfiU_MZEDpbWQBFYZUlz35uQgQIoiDSiRdBbxHBFKtGhpw65s3X0BzweMQ5Y7Fcp0m-_Iqa93ND-ZxsTDQgmMlAI64FB4vTrjsa0NpG5xPMZuTz-cjFfsNx3gQVwXwZWB6GappCxgg0uE8SAJkEYDZKtwdlxrnRGF7GREguhyqbxgjvjItfaaF1GXT4nu13fpZeEylBDSOZ1I5KvnKlMEb0JMnnDXXJazgifdtuGDEqOvTFu7JR9dm2RQhYpZAtlgUIz8mkzZzVCcmwdLSci2n8Yy4LN2Drvw0RxCwTEaxTXpf7uuy0LsOgKNBffMgZzXxSXqpyRFyO7bNZaGlB8VVG9-s-VvSf7i4vzM3t2sjx9TR7gF8yv4fIN2R1u79Jb8JIG_y5LwR--aA-_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+electrochemical+nitrate+reduction+to+ammonia+via+boron-doped+hydroxyl+oxide+cobalt+induced+electron+delocalization&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Guo%2C+Jing&rft.au=Wang%2C+Qi&rft.au=Chen%2C+Chunxia&rft.au=Zhang%2C+Chunfa&rft.date=2024-12-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.volume=676&rft.spage=560&rft.epage=568&rft_id=info:doi/10.1016%2Fj.jcis.2024.07.160&rft.externalDocID=S0021979724016722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon