High-efficiency electrochemical nitrate reduction to ammonia via boron-doped hydroxyl oxide cobalt induced electron delocalization
[Display omitted] Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low...
Saved in:
Published in | Journal of colloid and interface science Vol. 676; pp. 560 - 568 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2024.07.160 |
Cover
Loading…
Abstract | [Display omitted]
Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat−1 at −0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3. |
---|---|
AbstractList | [Display omitted]
Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat−1 at −0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3. Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat⁻¹ at −0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH₃. Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat-1 at -0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3.Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat-1 at -0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3. Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat at -0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH . |
Author | Zhang, Yushuo Zhang, Chunfa Wu, Yingjie Kan, Ziwang Liu, Song Chen, Chunxia Xu, Yinghua Wang, Qi Sun, Tantan Hong, Yan Guo, Jing |
Author_xml | – sequence: 1 givenname: Jing surname: Guo fullname: Guo, Jing organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China – sequence: 2 givenname: Qi surname: Wang fullname: Wang, Qi organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China – sequence: 3 givenname: Chunxia surname: Chen fullname: Chen, Chunxia email: ccx1759@163.com organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China – sequence: 4 givenname: Chunfa surname: Zhang fullname: Zhang, Chunfa organization: Changchun Jiutai District People’s Hospital, Changchun 130500, China – sequence: 5 givenname: Yinghua surname: Xu fullname: Xu, Yinghua organization: Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 311215, China – sequence: 6 givenname: Yushuo surname: Zhang fullname: Zhang, Yushuo organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China – sequence: 7 givenname: Yan surname: Hong fullname: Hong, Yan organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China – sequence: 8 givenname: Ziwang surname: Kan fullname: Kan, Ziwang organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China – sequence: 9 givenname: Yingjie surname: Wu fullname: Wu, Yingjie organization: School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China – sequence: 10 givenname: Tantan surname: Sun fullname: Sun, Tantan email: suntantan@zju.edu.cn organization: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China – sequence: 11 givenname: Song orcidid: 0000-0002-1792-6016 surname: Liu fullname: Liu, Song email: carlosliusong@nefu.edu.cn organization: College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39053404$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbFu2zAURYkiReMk_YEOBccuUh9FSSSBLkXQJgECZGlmgiafahoS6ZJyEGfsl5eO3Q4dkoF4A8-5w71n5CTEgIR8YFAzYP3ndb22PtcNNG0NomY9vCELBqqrBAN-QhYADauUUOKUnOW8BmCs69Q7csoVdLyFdkF-X_ufqwqHwVuPwe4ojmjnFO0KJ2_NSIOfk5mRJnRbO_sY6BypmaYYvKEP5S1jiqFycYOOrnYuxcfdSOOjd0htXJpxpj4UtfweowN1OMaS7Z_MPvCCvB3MmPH98Z6T--_fflxeV7d3VzeXX28ry6Waq942Yhigc23DFEcmW4XQ9lKAbAQ3hhslwQ1d13dtz4dh2TCjjGNSKim5k_ycfDrkblL8tcU868lni-NoAsZt1rwpfQnWCf46CrIVgqmeFfTjEd0uJ3R6k_xk0k7_rbgAzQGwKeaccPiHMND7HfVa73fU-x01CF12LJL8T7J-fm6rrOHHl9UvBxVLlw8ek87P06LzqfSvXfQv6X8A3Hu5_g |
CitedBy_id | crossref_primary_10_1002_smll_202412626 crossref_primary_10_1016_j_cej_2025_161528 crossref_primary_10_1039_D4CC04193C crossref_primary_10_1021_acsanm_4c05720 crossref_primary_10_1016_j_apcatb_2025_125254 |
Cites_doi | 10.1002/adma.202209855 10.1016/j.nanoen.2024.109594 10.1016/j.apcatb.2022.122353 10.1002/anie.202300054 10.1016/j.apcatb.2022.121404 10.1002/adfm.202110783 10.1002/anie.202313886 10.1002/adfm.202108644 10.1016/j.apcatb.2023.122687 10.1016/j.apcatb.2021.120829 10.1016/j.apcatb.2022.122319 10.1021/jacs.1c03375 10.1016/j.apcatb.2023.122534 10.1002/adma.202104667 10.1038/s41467-022-35664-w 10.1021/acsnano.4c01958 10.1002/adfm.202209890 10.1021/jacs.0c04867 10.1016/j.cej.2023.141960 10.1038/s41565-020-00809-9 10.1016/j.jece.2024.113141 10.1002/adfm.201901051 10.1007/s40820-023-01217-z 10.1038/s41467-023-43897-6 10.1039/D1CS00857A 10.1021/jacs.2c13015 10.1021/acsami.1c15206 10.1002/smll.202105331 10.1007/s40843-022-2263-x 10.1002/smll.202207743 10.1021/jacs.2c02262 10.1002/anie.202117178 10.1038/s41467-023-39366-9 10.1016/j.apcatb.2022.122293 10.1039/D1EE03097C 10.1007/s12274-023-5556-7 10.1016/j.apcatb.2022.121094 10.1021/jacs.3c02428 10.1016/j.apcatb.2023.123234 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024. Published by Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024. Published by Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2024.07.160 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 568 |
ExternalDocumentID | 39053404 10_1016_j_jcis_2024_07_160 S0021979724016722 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 LX6 M24 NDZJH NEJ R2- SCB SCE SSH VH1 WUQ ZGI ZXP EFKBS NPM 7X8 EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-6c27ff05d42193e1849e0468708273aa3a980df5565463ffb21a9ad1889883d83 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Sep 05 17:15:46 EDT 2025 Fri Sep 05 03:02:07 EDT 2025 Mon Jul 21 06:08:51 EDT 2025 Tue Jul 01 04:19:32 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Sat Sep 14 18:00:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Transition metal catalyst Ammonia synthesis Nitrate reduction Doping strategy |
Language | English |
License | Copyright © 2024. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-6c27ff05d42193e1849e0468708273aa3a980df5565463ffb21a9ad1889883d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1792-6016 |
PMID | 39053404 |
PQID | 3084771961 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3200271573 proquest_miscellaneous_3084771961 pubmed_primary_39053404 crossref_primary_10_1016_j_jcis_2024_07_160 crossref_citationtrail_10_1016_j_jcis_2024_07_160 elsevier_sciencedirect_doi_10_1016_j_jcis_2024_07_160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-15 |
PublicationDateYYYYMMDD | 2024-12-15 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dou, Yuan, Yu, Zhang, Zhang, Fan, Al-Mamun, Liu, He, Zhao (b0190) 2022; 34 Han, Hu, Yu, Xu, Jing, Liu, Gao, Zhang (b0100) 2023; 328 Shin, Jung, Kim, Kim, Song, Park, An, Koo (b0125) 2024; 340 Liu, Qiao, Chen, Zhou, Feng, Leong, Ng, Peng, Wang, Ip, Pan (b0045) 2023; 324 Xiong, Yao, Zhu, Xiao, Hu, Huang, Zhang, Balogun (b0145) 2022; 18 Zhang, Wu, Zheng, Jin, Shen, Li, Wang, Wang, Wang, Wei, Zhang, Wang, Zhang, Yu, Dong, Zhu, Zhang, Lu (b0080) 2023; 14 Chen, Ma, Li, Kang, Ma, Chu (b0175) 2023; 33 Yao, Wang, Jia, Yin, Cong, Chen, Luo (b0055) 2022; 61 Sfeir, Teles, Ciotonea, Reddy, Marinova, Dhainaut, Löfberg, Dacquin, Royer, Laassiri (b0030) 2023; 325 Shen, Yu, Zhao, Mushtaq, Ji, Yasin, Rehman, Liu, Cai, Tsiakaras, Zhao, N (b0105) 2023; 331 Dou, Yuan, Yu, Zhang, Zhang, Fan, Al-Mamun, Liu, He, Zhao (b0060) 2021; 34 Zhao, Hai, Li, Jiang, Wang (b0205) 2023; 461 Gao, Zeng, Tang, Wang, Yang, Hu, Liu (b0065) 2021; 32 Guo, Li, Yang, Luo, Liu, Zhang, Tang, Yang, Zhou (b0165) 2023; 19 Hattori, Okuyama, Kurosawa, Hara (b0120) 2023; 145 J. Yuan, H. Yin, X. Jin, D. Zhao, Y. Liu, A. Du, X. Liu, A.P. O’Mullane, A practical FeP nanoarrays electrocatalyst for efficient catalytic reduction of nitrite ions in wastewater to ammonia, Appl. Catal., B 325 (2023) 122353. Yang, Zhang, Yang, Wang, Li, Gong, Yao, Du, Liu, Yu (b0005) 2022; 312 Zhang, Zha, Ye, Li, Lin, Zheng, Wang, Zhang, Yin, Shi, Zhang (b0010) 2023; 16 Jia, Yao, Yu, Cong, Luo (b0020) 2023; 62 Ye, Chen, Zhang, Chen, Peng, Yang, Zheng, Li, Ren, Cao, Xue, Qiu, Zhang, Liu (b0135) 2022; 15 Chen, Wang, Guo, Ma, Chu (b0185) 2023; 16 Zhang, Zheng, Zhou, Ye, Chu, Zhou, Zhang, Liu (b0050) 2023; 35 Moysiadou, Lee, Hsu, Chen, Hu (b0025) 2020; 142 Xu, Zhang, Zhou, Li, Zhou, Xu, Jia, Zhu, Wu, Gao, Ye (b0090) 2022; 66 Xu, Ma, Chen, Zhang, Yang (b0160) 2022; 51 Ding, Hai, Li, Yang, Yuan, Zhang, Luo (b0200) 2024; 12 Reith, Triana, Pazoki, Amiri, Nyman, Patzke (b0150) 2021; 143 Xu, Ren, Ren, Wang, Wang, Li, Wang, Wang (b0130) 2022; 306 Zhang, Li, Chen, Guo, Ma, Chu (b0170) 2023; 62 Huang, Long, Wang, Meng, Yu, Lu, Xiao, Zhang (b0195) 2021; 13 Zhang, Wan, Chen, Zhang, Chu (b0095) 2024; 125 Zhang, Li, Cui, Wang, Zhang, Li, Hou, Guo, Liang, Huang, Peng, Zhi (b0070) 2023; 14 Xiang, Qiang, Shang, Chen, Kang, Chu (b0155) 2024 Wang, Wang, Liu, Li, Gao (b0115) 2019; 29 Feng, Wu, Liu, Xu, Song, Zhang, Zhu, Kang, Sun, Han (b0140) 2023; 145 Yang, Qi, Li, Liu, Yang, Zhang, Zhao, Jiang, Su, Zhang, Li, Tian, Liu, Wang, Zhang (b0075) 2022; 144 Han, Li, Chen, Coppex, Kim, Noh, Fu, Lu, Singh, Siahrostami, Jiang, Baek (b0035) 2020; 16 Wang, Shang, Sun, Yang, Chu (b0040) 2024; 18 Sun, Gao, Fei, Zhao (b0180) 2022; 301 Fan, Wang, Zhang, Song, Zheng, Li, Tan, Han, Deng, Hu (b0085) 2022; 32 Fan, Xie, Li, Sun, Xu, Tang, Li, Shao (b0110) 2022; 13 10.1016/j.jcis.2024.07.160_b0015 Yao (10.1016/j.jcis.2024.07.160_b0055) 2022; 61 Yang (10.1016/j.jcis.2024.07.160_b0005) 2022; 312 Fan (10.1016/j.jcis.2024.07.160_b0110) 2022; 13 Zhang (10.1016/j.jcis.2024.07.160_b0050) 2023; 35 Xu (10.1016/j.jcis.2024.07.160_b0160) 2022; 51 Fan (10.1016/j.jcis.2024.07.160_b0085) 2022; 32 Wang (10.1016/j.jcis.2024.07.160_b0040) 2024; 18 Huang (10.1016/j.jcis.2024.07.160_b0195) 2021; 13 Zhang (10.1016/j.jcis.2024.07.160_b0010) 2023; 16 Jia (10.1016/j.jcis.2024.07.160_b0020) 2023; 62 Zhang (10.1016/j.jcis.2024.07.160_b0170) 2023; 62 Wang (10.1016/j.jcis.2024.07.160_b0115) 2019; 29 Xu (10.1016/j.jcis.2024.07.160_b0090) 2022; 66 Xiong (10.1016/j.jcis.2024.07.160_b0145) 2022; 18 Chen (10.1016/j.jcis.2024.07.160_b0185) 2023; 16 Zhang (10.1016/j.jcis.2024.07.160_b0080) 2023; 14 Gao (10.1016/j.jcis.2024.07.160_b0065) 2021; 32 Shin (10.1016/j.jcis.2024.07.160_b0125) 2024; 340 Zhang (10.1016/j.jcis.2024.07.160_b0095) 2024; 125 Dou (10.1016/j.jcis.2024.07.160_b0190) 2022; 34 Guo (10.1016/j.jcis.2024.07.160_b0165) 2023; 19 Chen (10.1016/j.jcis.2024.07.160_b0175) 2023; 33 Xiang (10.1016/j.jcis.2024.07.160_b0155) 2024 Hattori (10.1016/j.jcis.2024.07.160_b0120) 2023; 145 Ye (10.1016/j.jcis.2024.07.160_b0135) 2022; 15 Feng (10.1016/j.jcis.2024.07.160_b0140) 2023; 145 Reith (10.1016/j.jcis.2024.07.160_b0150) 2021; 143 Zhang (10.1016/j.jcis.2024.07.160_b0070) 2023; 14 Sun (10.1016/j.jcis.2024.07.160_b0180) 2022; 301 Ding (10.1016/j.jcis.2024.07.160_b0200) 2024; 12 Xu (10.1016/j.jcis.2024.07.160_b0130) 2022; 306 Yang (10.1016/j.jcis.2024.07.160_b0075) 2022; 144 Zhao (10.1016/j.jcis.2024.07.160_b0205) 2023; 461 Han (10.1016/j.jcis.2024.07.160_b0035) 2020; 16 Dou (10.1016/j.jcis.2024.07.160_b0060) 2021; 34 Moysiadou (10.1016/j.jcis.2024.07.160_b0025) 2020; 142 Liu (10.1016/j.jcis.2024.07.160_b0045) 2023; 324 Han (10.1016/j.jcis.2024.07.160_b0100) 2023; 328 Shen (10.1016/j.jcis.2024.07.160_b0105) 2023; 331 Sfeir (10.1016/j.jcis.2024.07.160_b0030) 2023; 325 |
References_xml | – volume: 14 start-page: 8036 year: 2023 ident: b0070 article-title: Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells publication-title: Nat. Commun. – volume: 145 start-page: 9857 year: 2023 end-page: 9866 ident: b0140 article-title: Improving CO publication-title: J. Am. Chem. Soc. – volume: 62 start-page: e202313886 year: 2023 ident: b0020 article-title: Unveiling the electrolyte cations dependent kinetics on CoOOH-catalyzed oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 145 start-page: 7888 year: 2023 end-page: 7897 ident: b0120 article-title: Low-temperature ammonia synthesis on iron catalyst with an electron donor publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 2209890 year: 2023 ident: b0175 article-title: Single-Atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia publication-title: Adv. Funct. Mater. – volume: 34 start-page: e2104667 year: 2021 ident: b0060 article-title: Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis publication-title: Adv. Mater. – year: 2024 ident: b0155 article-title: Tandem electrocatalytic reduction of nitrite to ammonia on rhodium-copper single atom alloys publication-title: Adv. Funct. Mater. – volume: 16 start-page: 8737 year: 2023 end-page: 8742 ident: b0185 article-title: Iridium single-atom catalyst for highly efficient NO electroreduction to NH publication-title: Nano Res. – volume: 35 start-page: 2209855 year: 2023 ident: b0050 article-title: Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia publication-title: Adv. Mater. – volume: 328 year: 2023 ident: b0100 article-title: Dual confinement of LaCoO publication-title: Appl Catal B – volume: 331 year: 2023 ident: b0105 article-title: O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate publication-title: Appl Catal B – volume: 66 start-page: 1352 year: 2022 end-page: 1361 ident: b0090 article-title: Boosting the interlayer-confined nitrate reduction reaction by in situ electrochemical potassium ion intercalation publication-title: Sci. China Mater. – volume: 312 year: 2022 ident: b0005 article-title: Molybdenum-based nitrogen carrier for ammonia production via a chemical looping route publication-title: Appl Catal B – volume: 61 start-page: e202117178 year: 2022 ident: b0055 article-title: Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation publication-title: Angew. Chem. Int. Ed. – volume: 340 year: 2024 ident: b0125 article-title: Elucidating the effect of Ce with abundant surface oxygen vacancies on MgAl publication-title: Appl. Catal. B – volume: 18 start-page: e2105331 year: 2022 ident: b0145 article-title: In situ grown Co-based interstitial compounds: non-3d metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis publication-title: Small – reference: J. Yuan, H. Yin, X. Jin, D. Zhao, Y. Liu, A. Du, X. Liu, A.P. O’Mullane, A practical FeP nanoarrays electrocatalyst for efficient catalytic reduction of nitrite ions in wastewater to ammonia, Appl. Catal., B 325 (2023) 122353. – volume: 32 start-page: 2108644 year: 2021 ident: b0065 article-title: Understanding the synergistic effects and structural evolution of Co(OH) publication-title: Adv. Funct. Mater. – volume: 324 year: 2023 ident: b0045 article-title: Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co publication-title: Appl Catal B – volume: 18 start-page: 13141 year: 2024 end-page: 13149 ident: b0040 article-title: P-block antimony-copper single-atom alloys for selective nitrite electroreduction to ammonia publication-title: ACS Nano – volume: 144 start-page: 12062 year: 2022 end-page: 12071 ident: b0075 article-title: Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2710 year: 2022 end-page: 2758 ident: b0160 article-title: Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle publication-title: Chem. Soc. Rev. – volume: 14 start-page: 3634 year: 2023 ident: b0080 article-title: Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia publication-title: Nat. Commun. – volume: 142 start-page: 11901 year: 2020 end-page: 11914 ident: b0025 article-title: Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step publication-title: J. Am. Chem. Soc. – volume: 325 year: 2023 ident: b0030 article-title: Enhancing ammonia catalytic production over spatially confined cobalt molybdenum nitride nanoparticles in SBA-15 publication-title: Appl Catal B – volume: 143 start-page: 15022 year: 2021 end-page: 15038 ident: b0150 article-title: Unraveling nanoscale cobalt oxide catalysts for the oxygen evolution reaction: maximum performance, minimum effort publication-title: J. Am. Chem. Soc. – volume: 34 start-page: e2104667 year: 2022 ident: b0190 article-title: Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis publication-title: Adv. Mater. – volume: 12 year: 2024 ident: b0200 article-title: Modulation of cationic vacancies in Co publication-title: J. Environ. Chem. Eng. – volume: 125 year: 2024 ident: b0095 article-title: p-d hybridized In-Co dual sites promote nitrite electroreduction to ammonia at high current density publication-title: Nano Energy – volume: 19 start-page: 2207743 year: 2023 ident: b0165 article-title: Self-supported Pd nanorod arrays for high-efficient nitrate electroreduction to ammonia publication-title: Small – volume: 29 start-page: 1901051 year: 2019 ident: b0115 article-title: Conductive CoOOH as carbon-free sulfur lmmobilizer to fabricate sulfur-based composite for lithium–sulfur battery publication-title: Adv. Funct. Mater. – volume: 301 year: 2022 ident: b0180 article-title: Efficient and selective electrochemical reduction of nitrate to N publication-title: Appl Catal B – volume: 16 start-page: 9 year: 2023 ident: b0010 article-title: Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia publication-title: Nano-Micro Lett. – volume: 16 start-page: 325 year: 2020 end-page: 330 ident: b0035 article-title: Mechanochemistry for ammonia synthesis under mild conditions publication-title: Nat. Nanotechnol. – volume: 13 start-page: 7958 year: 2022 ident: b0110 article-title: Active hydrogen boosts electrochemical nitrate reduction to ammonia publication-title: Nat. Commun. – volume: 62 year: 2023 ident: b0170 article-title: Tandem electrocatalytic nitrate reduction to ammonia on MBenes publication-title: Angew. Chem. Int. Ed. – volume: 461 year: 2023 ident: b0205 article-title: Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation publication-title: Chem. Eng. J. – volume: 32 start-page: 2110783 year: 2022 ident: b0085 article-title: Phase transfer of Mo publication-title: Adv. Funct. Mater. – volume: 306 year: 2022 ident: b0130 article-title: Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu publication-title: Appl. Catal. B – volume: 13 start-page: 54967 year: 2021 end-page: 54973 ident: b0195 article-title: Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 760 year: 2022 end-page: 770 ident: b0135 article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide publication-title: Energ. Environ. Sci. – volume: 35 start-page: 2209855 issue: 10 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0050 article-title: Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia publication-title: Adv. Mater. doi: 10.1002/adma.202209855 – year: 2024 ident: 10.1016/j.jcis.2024.07.160_b0155 article-title: Tandem electrocatalytic reduction of nitrite to ammonia on rhodium-copper single atom alloys publication-title: Adv. Funct. Mater. – volume: 125 year: 2024 ident: 10.1016/j.jcis.2024.07.160_b0095 article-title: p-d hybridized In-Co dual sites promote nitrite electroreduction to ammonia at high current density publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109594 – ident: 10.1016/j.jcis.2024.07.160_b0015 doi: 10.1016/j.apcatb.2022.122353 – volume: 62 issue: 13 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0170 article-title: Tandem electrocatalytic nitrate reduction to ammonia on MBenes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202300054 – volume: 312 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0005 article-title: Molybdenum-based nitrogen carrier for ammonia production via a chemical looping route publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.121404 – volume: 32 start-page: 2110783 issue: 20 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0085 article-title: Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110783 – volume: 62 start-page: e202313886 issue: 49 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0020 article-title: Unveiling the electrolyte cations dependent kinetics on CoOOH-catalyzed oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202313886 – volume: 32 start-page: 2108644 issue: 6 year: 2021 ident: 10.1016/j.jcis.2024.07.160_b0065 article-title: Understanding the synergistic effects and structural evolution of Co(OH)2 and Co3O4 toward boosting electrochemical charge storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108644 – volume: 331 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0105 article-title: O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate publication-title: Appl Catal B doi: 10.1016/j.apcatb.2023.122687 – volume: 301 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0180 article-title: Efficient and selective electrochemical reduction of nitrate to N2 by relay catalytic effects of Fe-Ni bimetallic sites on MOF-derived structure publication-title: Appl Catal B doi: 10.1016/j.apcatb.2021.120829 – volume: 325 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0030 article-title: Enhancing ammonia catalytic production over spatially confined cobalt molybdenum nitride nanoparticles in SBA-15 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.122319 – volume: 143 start-page: 15022 issue: 37 year: 2021 ident: 10.1016/j.jcis.2024.07.160_b0150 article-title: Unraveling nanoscale cobalt oxide catalysts for the oxygen evolution reaction: maximum performance, minimum effort publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03375 – volume: 328 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0100 article-title: Dual confinement of LaCoOx modified Co nanoparticles for superior and stable ammonia decomposition publication-title: Appl Catal B doi: 10.1016/j.apcatb.2023.122534 – volume: 34 start-page: e2104667 issue: 2 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0190 article-title: Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis publication-title: Adv. Mater. doi: 10.1002/adma.202104667 – volume: 13 start-page: 7958 issue: 1 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0110 article-title: Active hydrogen boosts electrochemical nitrate reduction to ammonia publication-title: Nat. Commun. doi: 10.1038/s41467-022-35664-w – volume: 18 start-page: 13141 issue: 20 year: 2024 ident: 10.1016/j.jcis.2024.07.160_b0040 article-title: P-block antimony-copper single-atom alloys for selective nitrite electroreduction to ammonia publication-title: ACS Nano doi: 10.1021/acsnano.4c01958 – volume: 33 start-page: 2209890 issue: 12 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0175 article-title: Single-Atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209890 – volume: 142 start-page: 11901 issue: 27 year: 2020 ident: 10.1016/j.jcis.2024.07.160_b0025 article-title: Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04867 – volume: 461 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0205 article-title: Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141960 – volume: 16 start-page: 325 issue: 3 year: 2020 ident: 10.1016/j.jcis.2024.07.160_b0035 article-title: Mechanochemistry for ammonia synthesis under mild conditions publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00809-9 – volume: 12 issue: 4 year: 2024 ident: 10.1016/j.jcis.2024.07.160_b0200 article-title: Modulation of cationic vacancies in Co3O4 for promoted photocatalytic nitrogen fixation and electrocatalytic nitrate reduction to ammonia publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.113141 – volume: 29 start-page: 1901051 issue: 23 year: 2019 ident: 10.1016/j.jcis.2024.07.160_b0115 article-title: Conductive CoOOH as carbon-free sulfur lmmobilizer to fabricate sulfur-based composite for lithium–sulfur battery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901051 – volume: 16 start-page: 9 issue: 1 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0010 article-title: Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01217-z – volume: 14 start-page: 8036 issue: 1 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0070 article-title: Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells publication-title: Nat. Commun. doi: 10.1038/s41467-023-43897-6 – volume: 51 start-page: 2710 issue: 7 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0160 article-title: Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00857A – volume: 145 start-page: 7888 issue: 14 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0120 article-title: Low-temperature ammonia synthesis on iron catalyst with an electron donor publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c13015 – volume: 13 start-page: 54967 issue: 46 year: 2021 ident: 10.1016/j.jcis.2024.07.160_b0195 article-title: Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15206 – volume: 18 start-page: e2105331 issue: 9 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0145 article-title: In situ grown Co-based interstitial compounds: non-3d metal and non-metal dual modulation boosts alkaline and acidic hydrogen electrocatalysis publication-title: Small doi: 10.1002/smll.202105331 – volume: 66 start-page: 1352 issue: 4 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0090 article-title: Boosting the interlayer-confined nitrate reduction reaction by in situ electrochemical potassium ion intercalation publication-title: Sci. China Mater. doi: 10.1007/s40843-022-2263-x – volume: 19 start-page: 2207743 issue: 10 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0165 article-title: Self-supported Pd nanorod arrays for high-efficient nitrate electroreduction to ammonia publication-title: Small doi: 10.1002/smll.202207743 – volume: 144 start-page: 12062 issue: 27 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0075 article-title: Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c02262 – volume: 61 start-page: e202117178 issue: 28 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0055 article-title: Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202117178 – volume: 14 start-page: 3634 issue: 1 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0080 article-title: Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia publication-title: Nat. Commun. doi: 10.1038/s41467-023-39366-9 – volume: 324 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0045 article-title: Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co3O4 nanotubes publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.122293 – volume: 15 start-page: 760 issue: 2 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0135 article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide publication-title: Energ. Environ. Sci. doi: 10.1039/D1EE03097C – volume: 16 start-page: 8737 issue: 7 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0185 article-title: Iridium single-atom catalyst for highly efficient NO electroreduction to NH3 publication-title: Nano Res. doi: 10.1007/s12274-023-5556-7 – volume: 306 year: 2022 ident: 10.1016/j.jcis.2024.07.160_b0130 article-title: Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121094 – volume: 145 start-page: 9857 issue: 17 year: 2023 ident: 10.1016/j.jcis.2024.07.160_b0140 article-title: Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02428 – volume: 34 start-page: e2104667 issue: 2 year: 2021 ident: 10.1016/j.jcis.2024.07.160_b0060 article-title: Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis publication-title: Adv. Mater. doi: 10.1002/adma.202104667 – volume: 340 year: 2024 ident: 10.1016/j.jcis.2024.07.160_b0125 article-title: Elucidating the effect of Ce with abundant surface oxygen vacancies on MgAl2O4-supported Ru-based catalysts for ammonia decomposition publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2023.123234 |
SSID | ssj0011559 |
Score | 2.488027 |
Snippet | [Display omitted]
Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route,... Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 560 |
SubjectTerms | adsorption ammonia Ammonia synthesis boron cobalt density functional theory desorption Doping strategy Electrocatalysis electrochemistry electrodes hydrogen hydrogenation Nitrate reduction species Transition metal catalyst |
Title | High-efficiency electrochemical nitrate reduction to ammonia via boron-doped hydroxyl oxide cobalt induced electron delocalization |
URI | https://dx.doi.org/10.1016/j.jcis.2024.07.160 https://www.ncbi.nlm.nih.gov/pubmed/39053404 https://www.proquest.com/docview/3084771961 https://www.proquest.com/docview/3200271573 |
Volume | 676 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV2_b9UwELaqdgAGBOXXK6UyEhtyGzt2bI_VE9UDRCcqdbMc2xGpquSppAgWBv7y3iXOEwx9A0OGRHZk-c53Z_u77wh5J6wQqdIFExZJtXUtmE2GM1FXsqmCijbigf6X82p1IT9dqssdspxzYRBWmW3_ZNNHa52_nOTZPFm3Leb4wmrTVoNP4pUWaIel1Miff_x7A_PgeO02wTw4w9Y5cWbCeF2FFim7hTyezlnuc073BZ-jEzp7Qh7n6JGeTgN8SnZSt08eLOeibfvk0V_8gs_IH0RxsDSyRGCKJc1Fb0JmCaCwnpEqgt4ggSuKiA499aiarac_4KmR4IDFfp0i_fYrIublmvY_25hoQCaRgcKeHrQjzr_uaEyjf8z5nc_JxdmHr8sVy0UXWIDYZWBVELppChUlzG6ZYANoE-yhYVkbiHS8L701RWyUwiyosmlqwb31kRtjjSmjKV-Q3a7v0itCVahgP1abRqRaeittEWsbVKot98kbtSB8nm0XMiM5Fsa4djP07MqhhBxKyBXagYQW5P2mz3ri49jaWs1CdP9olQOHsbXf21niDgSIdyi-S_3td1cW4M41mC2-pQ0CXzRXulyQl5O6bMZaWrB6spAH_zmy1-QhviGghqtDsjvc3KY3EBYN9dGo90dk7_Tj59X5HZUfDQ4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9lA4ICiv5Wkkbsg0duLYPlYrqi1t99RKvVl-RaSqklVJEVz55cxsnBUcugcOuSR2ZHne9sw3hHwURohUq4IJg6DaygtmkuZM-Lpq6iCjiXigf76sF5fV1yt5tUPmUy0MplVm3T_q9LW2zm8O824ertoWa3xB2pRRYJN4rQTo4T1EpwJm3zs6OV0sN5cJePM2ZnpwhhNy7cyY5nUdWkTtFtXn8ajlPvt0n_-5tkPHj8mj7EDSo3GNT8hO6g7I_nzq23ZAHv4FMfiU_MZEDpbWQBFYZUlz35uQgQIoiDSiRdBbxHBFKtGhpw65s3X0BzweMQ5Y7Fcp0m-_Iqa93ND-ZxsTDQgmMlAI64FB4vTrjsa0NpG5xPMZuTz-cjFfsNx3gQVwXwZWB6GappCxgg0uE8SAJkEYDZKtwdlxrnRGF7GREguhyqbxgjvjItfaaF1GXT4nu13fpZeEylBDSOZ1I5KvnKlMEb0JMnnDXXJazgifdtuGDEqOvTFu7JR9dm2RQhYpZAtlgUIz8mkzZzVCcmwdLSci2n8Yy4LN2Drvw0RxCwTEaxTXpf7uuy0LsOgKNBffMgZzXxSXqpyRFyO7bNZaGlB8VVG9-s-VvSf7i4vzM3t2sjx9TR7gF8yv4fIN2R1u79Jb8JIG_y5LwR--aA-_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+electrochemical+nitrate+reduction+to+ammonia+via+boron-doped+hydroxyl+oxide+cobalt+induced+electron+delocalization&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Guo%2C+Jing&rft.au=Wang%2C+Qi&rft.au=Chen%2C+Chunxia&rft.au=Zhang%2C+Chunfa&rft.date=2024-12-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.volume=676&rft.spage=560&rft.epage=568&rft_id=info:doi/10.1016%2Fj.jcis.2024.07.160&rft.externalDocID=S0021979724016722 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |