Particle Swarm Optimization Based Active Noise Control Algorithm Without Secondary Path Identification

In this paper, particle swarm optimization (PSO) algorithm, which is a nongradient but simple evolutionary computing-type algorithm, is proposed for developing an efficient active noise control (ANC) system. The ANC is conventionally used to control low-frequency acoustic noise by employing a gradie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 61; no. 2; pp. 554 - 563
Main Authors Rout, N. K., Das, D. P., Panda, G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, particle swarm optimization (PSO) algorithm, which is a nongradient but simple evolutionary computing-type algorithm, is proposed for developing an efficient active noise control (ANC) system. The ANC is conventionally used to control low-frequency acoustic noise by employing a gradient-optimization-based filtered-X least mean square (FXLMS) algorithm. Hence, there is a possibility that the performance of the ANC may be trapped by local minima problem. In addition, the conventional FXLMS algorithm needs prior identification of the secondary path. The proposed PSO-based ANC algorithm does not require the estimation of secondary path transfer function unlike FXLMS algorithm and, hence, is immune to time-varying nature of the secondary path. In this investigation, a small modification is incorporated in the conventional PSO algorithm to develop a conditional reinitialized PSO algorithm to suit to the time-varying plants of the ANC system. Systematic computer simulation studies are carried out to evaluate the performance of the new PSO-based ANC algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2011.2169180