Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acid-immobilized polymer/bentonite composite: Kinetics and equilibrium modeling

This study explored the feasibility of utilizing a novel adsorbent, humic acid-immobilized-amine-modified polyacrylamide/bentonite composite (HA-Am-PAA-B) for the adsorption of Cu(II), Zn(II) and Co(II) ions from aqueous solutions. The FTIR and XRD analyses were done to characterize the adsorbent ma...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 156; no. 1; pp. 146 - 156
Main Authors Anirudhan, T.S., Suchithra, P.S.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier B.V 2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study explored the feasibility of utilizing a novel adsorbent, humic acid-immobilized-amine-modified polyacrylamide/bentonite composite (HA-Am-PAA-B) for the adsorption of Cu(II), Zn(II) and Co(II) ions from aqueous solutions. The FTIR and XRD analyses were done to characterize the adsorbent material. The effects of pH, contact time, initial adsorbate concentration, ionic strength and adsorbent dose on adsorption of metal ions were investigated using batch adsorption experiments. The optimum pH for Cu(II), Zn(II) and Co(II) adsorption was observed at 5.0, 9.0 and 8.0, respectively. The mechanism for the removal of metal ions by HA-Am-PAA-B was based on ion exchange and complexation reactions. Metal removal by HA-Am-PAA-B followed a pseudo-second-order kinetics and equilibrium was achieved within 120 min. The suitability of Langmuir, Freundlich and Dubinin-Radushkevich adsorption models to the equilibrium data was investigated. The adsorption was well described by the Langmuir isotherm model. The maximum monolayer adsorption capacity was 106.2, 96.1 and 52.9 mg g −1 for Cu(II), Zn(II) and Co(II) ions, respectively, at 30 °C. The efficiency of HA-Am-PAA-B in removing metal ions from different industry wastewaters was tested. Adsorbed metal ions were desorbed effectively (97.7 for Cu(II), 98.5 for Zn(II) and 99.2% for Co(II)) by 0.1 M HCl. The reusability of the HA-Am-PAA-B for several cycles was also demonstrated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2009.10.011