The stability of nitrogen-centered radicals

Radical stabilization energies (RSEs) for a wide variety of nitrogen-centered radicals and their protonated counterparts have been calculated at G3(MP2)-RAD and G3B3 level. The calculated RSE values can be rationalized through the combined effects of resonance delocalization of the unpaired spin, el...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 13; no. 1; pp. 157 - 169
Main Authors Hioe, Johnny, Šakić, Davor, Vrček, Valerije, Zipse, Hendrik
Format Journal Article
LanguageEnglish
Published England 07.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Radical stabilization energies (RSEs) for a wide variety of nitrogen-centered radicals and their protonated counterparts have been calculated at G3(MP2)-RAD and G3B3 level. The calculated RSE values can be rationalized through the combined effects of resonance delocalization of the unpaired spin, electron donation through adjacent alkyl groups or lone pairs, and through inductive electron donation/electron withdrawal. The influence of ring strain effects as well as the synergistic combination of individual substituent effects (captodatively stabilized N-radicals) have also been explored. In symmetric N-radicals the substituents may also affect the relative ordering of electronic states. In most cases the π-type radical (unpaired spin distribution perpendicular to the plane of the N-radical) is found to be most stable. Closed shell precursors of biological and pharmaceutical relevance, for which neither experimental nor theoretical results on radical stabilities exist, have been included.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-0520
1477-0539
DOI:10.1039/c4ob01656d