Threshold levels of ERK activation for chemotactic migration differ for NGF and EGF in rat pheochromocytoma PC12 cells

In a previous study, we show that stimulation of chemotaxis in rat pheochromocytoma PC12 cells by nerve growth factor (NGF) and epidermal growth factor (EGF) requires activation of the RAS-ERK signaling pathway. In this study, we compared the threshold levels of ERK activation required for EGF and N...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 271; no. 1-2; pp. 29 - 41
Main Authors Ho, W C, Uniyal, S, Zhou, H, Morris, V L, Chan, B M C
Format Journal Article
LanguageEnglish
Published Netherlands Springer Nature B.V 01.03.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In a previous study, we show that stimulation of chemotaxis in rat pheochromocytoma PC12 cells by nerve growth factor (NGF) and epidermal growth factor (EGF) requires activation of the RAS-ERK signaling pathway. In this study, we compared the threshold levels of ERK activation required for EGF and NGF-stimulated chemotaxis in PC12 cells. The threshold ERK activity required for NGF to stimulate chemotaxis was approximately 30% lower than that for EGF. PD98059 treatment inhibited EGF stimulation of growth and chemotaxis; however, stimulation of chemotaxis required an EGF concentration approximately 10 times higher than for stimulation of PC12 cell growth. Thus, ERK-dependent cellular functions can be differentially elicited by the concentration of EGF. Also, treatment of PC12 cells with the PI3-K inhibitor LY294002 reduced ERK activation by NGF; thus, higher NGF concentrations were required to initiate chemotaxis and to achieve the same maximal chemotactic response seen in untreated PC12 cells. Therefore, the threshold NGF concentration to stimulate chemotaxis could be adjusted by the crosstalk between the ERK and PI3-K pathways, and the contributions of PI3-K and ERK to signal chemotaxis varied with the concentrations of NGF used. In comparison, LY294002 treatment had no effect on ERK activation by EGF, but the chemotactic response was reduced at all the concentrations of EGF tested indicating that NGF and EGF differed in the utilization of ERK and PI3-K to signal chemotaxis in PC12 cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-005-3458-5