Expression Profile of Genes Encoding Proteins Involved in Regulation of Vasculature Development and Heart Muscle Morphogenesis—A Transcriptomic Approach Based on a Porcine Model

Despite significant advances in treatment of acute coronary syndromes (ACS) many subjects still develop heart failure due to significantly reduced ejection fraction. Currently, there are no commonly available treatment strategies that replace the infarcted/dysfunctional myocardium. Therefore, unders...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 16; p. 8794
Main Authors Nawrocki, Mariusz J., Jopek, Karol, Zdun, Maciej, Mozdziak, Paul, Jemielity, Marek, Perek, Bartłomiej, Bukowska, Dorota, Kempisty, Bartosz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 16.08.2021
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms22168794

Cover

Loading…
More Information
Summary:Despite significant advances in treatment of acute coronary syndromes (ACS) many subjects still develop heart failure due to significantly reduced ejection fraction. Currently, there are no commonly available treatment strategies that replace the infarcted/dysfunctional myocardium. Therefore, understanding the mechanisms that control the regeneration of the heart muscle is important. The development of new coronary vessels plays a pivotal role in cardiac regeneration. Employing microarray expression assays and RT-qPCR validation expression pattern of genes in long-term primary cultured cells isolated form the right atrial appendage (RAA) and right atrium (RA) was evaluated. After using DAVID software, it indicated the analysis expression profiles of genes involved in ontological groups such as: “angiogenesis”, “blood vessel morphogenesis”, “circulatory system development”, “regulation of vasculature development”, and “vasculature development” associated with the process of creation new blood vessels. The performed transcriptomic comparative analysis between two different compartments of the heart muscle allowed us to indicate the presence of differences in the expression of key transcripts depending on the cell source. Increases in culture intervals significantly increased expression of SFRP2, PRRX1 genes and some other genes involved in inflammatory process, such as: CCL2, IL6, and ROBO1. Moreover, the right atrial appendage gene encoding lysyl oxidase (LOX) showed much higher expression compared to the pre-cultivation state.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22168794