The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease
While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced plurip...
Saved in:
Published in | Cell reports (Cambridge) Vol. 23; no. 10; pp. 2976 - 2988 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
05.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases.
[Display omitted]
•NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies
Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2211-1247 2211-1247 |
DOI: | 10.1016/j.celrep.2018.05.009 |